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1.  Introduction

2D layered crystals are at the frontier of research on novel 
materials and their applications in electronic and optoelec­
tronics devices [1]. Most studies in this area concern trans­
ition metal dichalcogenides such as molybdenum or tungsten 
disulfide and diselenide, which present unique electronic and 
optical properties [2]. However, another group of layered 
semiconductors based on IV–VI compounds have recently 
attracted the attention of researchers. Germanium selenide, 
the member of this group, crystalized in layered orthorhombic 
structure (figure 1(a)), present a narrow-band-gap in the range 
of 0.5–1.5 eV [3]. GeSe as other IV–VI materials is good 
candidate for photovoltaic [4] and photodetection devices 
as well as resistive switching memory devices [5]. The near 
infra-red photodetectors based on GeSe nanosheets was dem­
onstrated [6] with parameters comparable to devices based 
on other 2D materials. Additionally, unlike conventional 
narrow-band-gap semiconductors such as lead, cadmium or 

mercury compounds, GeSe and other IV–VI materials con­
sist of earth abundant, less toxic elements such as Ge, Se, Sn, 
and S. Germanium selenide can also be used in thermoelectric 
devices, where high Seebeck coefficients (S) and electric con­
ductivity (σ) and low thermal conductivity (κ) are simultane­
ously required. Theoretical studies predicts that GeSe is a high 
efficient thermoelectric material [7], with thermal properties 
similar to other IV–VI materials such as SnSe for which a very 
large power factor (ZT  =  2.62) and low thermal conductivity 
(0.4–0.7 W m−1 K−1 at T  =  300 K) was recently found [8]. 
These facts makes investigation of the thermal and phonon 
properties of germanium selenide particularly important.

As a result of growing interest in layered 2D semiconduc­
tors, Raman spectroscopy was used to investigate optical, 
electrical and thermal properties [9–13] of these materials. 
There are reports about room temperature [14] and temper­
ature dependent [15] Raman scattering in bulk germanium 
selenide single crystals. However, in those early works, no 
detailed analysis of temperature dependence of Raman modes 
of GeSe thin films was performed.

Here we present a detailed analysis of the effect of temper­
ature on the phonon properties of exfoliated germanium 
selenide thin films. In addition to other works, we report the 
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temperature dependence of not only Raman mode positions 
but also their widths. At low temperatures, we found a non­
linear temperature dependence of the positions and widths of 
all visible Raman modes. The observed nonlinear behavior 
results from anharmonic phonon–phonon interactions and was 
explained by the phenomenon of optical phonon decay into 
two or three acoustic phonons. At higher temperatures, the 
positions of Raman modes tend to exhibit linear dependence, 
and first order coefficients (χ) were extracted. The obtained 
results are useful for investigations of phonon-related thermal 
properties of germanium selenide and other IV–VI layered 
materials.

2.  Experiment

Germanium selenide thin flakes were fabricated using a con­
ventional mechanical exfoliation technique from bulk single 
crystals (2D semiconductors) on an SiO2 (285 nm)/Si substrate 
[16]. Optical confocal microscopy (monochromatic light, 
λ  =  405 nm) and atomic force microscopy (AFM) images 
are depicted in figures 1(b) and (c). The thicknesses of inves­
tigated thin films were obtained from AFM measurements in 
semi-contact mode and were about several tens of nanometers. 
Raman measurements were performed with a Renishaw inVia 
Raman Microscope in the backscattering geometry using a 
krypton 633 nm (1.96 eV) laser line and a 50  ×  objective. In 
addition, room temperature Raman spectra of GeSe were col­
lected using a 514 nm (2.41 eV) Ar laser line and a 1064 nm 
(1.16 eV) Nd:YAG laser. The determination of mode positions 
and widths had a resolution of approximately 0.5 cm−1. The 
laser power, calibrated on the sample, was kept low (0.2 mW)  
to avoid unintentional additional heating of the sample. 
Temperature-dependent measurements were carried out in 

an optical cryostat with temperatures in the 70–350 K range 
with 20 K steps. The measurements for each temperature were 
performed several times to minimize any statistical variation. 
Obtained Raman spectra were fitted using the Levenberg–
Marquardt algorithm with a Lorentzian shape function.

Figure 1.  (a) Crystal structure of germanium diselenide, (b) AFM image of an investigated GeSe flake (the inset shows height profile of the 
flake), (c) confocal optical microscopy image of the same flake, and (d) room temperature Raman spectra of GeSe taken with λex  =  514, 
633 and 1064 nm.

Figure 2.  Selected Raman spectra of GeSe thin flakes measured at 
temperatures ranging between 70 K and 350 K (λex  =  633 nm).
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3.  Results and discussion

Germanium selenide is a IV–VI layered semiconductor, and 
like its isomorphs GeS, SnS, and SnSe, it crystallizes at room 
temperature into stable, orthorhombic structures (Pnma). The 
unit cell of GeSe consists of eight atoms with unit cell para­
meters as follows: a  =  4.38 Å, b  =  3.82 Å, c  =  10.79 Å [14] 
(figure 1(a)). Germanium selenide belongs to the Pnma space 
group (D2

16 point group), and group theory predicts 21 optical 
modes. Among them, 12 are Raman active (4Ag  +  2B1g  +  4
B2g  +  2B3g), 7 are IR active (3B1u  +  1B2u  +  3B3u) and 2 are 
inactive (2Au) [14, 15]. Figure 1(d) shows Raman spectra of 
GeSe flake (100 nm thick, figures 1(b) and (c)) taken with dif­
ferent excitation wavelengths, λex  =  514, 633 and 1064 nm, 
and with circular polarization. Four, three, and two Raman 
modes were observed for λex  =  1064 nm, λex  =  633 nm and 
λex  =  514 nm, respectively. The two Raman peaks located at 
152 cm−1 and 189 cm−1 were observed with all wavelengths. 
An additional peak shows up at 176 cm−1 in spectra with 
λex  =  633 and 1064 nm. In the spectrum obtained with wave­
length λex  =  1064 nm, besides the modes mentioned above, 
a peak at ~81 cm−1 was observed. We have assigned the 
observed modes to the following symmetries: Ag (~81, 176 
and 189 cm−1) and B3g (~152 cm−1) [15]. For convenience, Ag 
modes are labelled as Ag(1) (176 cm−1) and Ag(2) (189 cm−1).

Figure 2 shows the evolution of selected Raman spectra 
over the temperature range of 70–350 K. All observed GeSe 
Raman modes downshifted and broadened with increasing 
temperature. Moreover, the nonlinear temperature dependence 
of mode position can also be seen. The temperature dependent 

Raman studies were also performed on few different flakes 
with different thickness (ranging from 50 to 200 nm) and 
similar non-linear temperature dependence of Raman spectra 
was observed. The detailed calculated Raman mode positions 
and FWHMs (Full Width at Half Maximum) are depicted in 
figure 3.

The origin of the temperature dependence of the Raman 
spectra could arise from anharmonic phonon–phonon inter­
actions as well as thermal expansion [17, 18]. However, the 
thermal expansion coefficient α, which describes the volume 
change upon temperature change, determined experimentally 
and by ab initio calculations, is low in GeSe (α  ≈  5  ×  10−5 
K−1) [19]. Thus, we attributed the observed changes in the 
Raman spectra to anharmonic effects.

To describe the temperature dependence of Raman mode 
position, we applied the approach developed by Balkanski 
et al [20] based on the extended Klemens–Hart–Aggarwal–
Lax model [21, 22]. In this model, the temperature depend­
ence of Raman mode position results from the cubic and 
quartic anharmonicity of lattice potential, which leads to 
optical phonon decay into two (three phonon process) or three 
(four phonon process) acoustic phonons. Balkanski et al pro­
posed the following formula to describe temperature depend­
ence of Raman mode position [19]:
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Figure 3.  Temperature dependence of (a) positions and (b) FWHMs of GeSe B3g, Ag(1), and Ag(2) Raman modes.

J. Phys. D: Appl. Phys. 49 (2016) 315301



A Taube et al

4

constant divided by 2π, kB is the Boltzmann constant, and 
A and B are anharmonic constants. This approach was also 
used to describe the temperature dependence of Raman 
mode position of various 2D and layered materials including 
molybdenum disulfide monolayers [23], rhenium and tin dis­
elenides [24], tungsten ditelluride [25]. The fit of equation (1) 
to experimental data is shown in figure 3(a). The theoretical 
curve fits very well to experimental data, thus confirming that 
phonon decay is the main factor responsible for temperature 
dependence of GeSe Raman spectra. The main decay channel 
for the Ag(1) mode involved three phonons, whereas for Ag(2) 
and B3g modes, the contribution of a four phonon process was 
apparent. The fit parameters are presented in table 1. As the 
probability of the four phonon process is much lower than 
the three phonon process, the A constant is greater than the B 
anharmonic constant, and the B/A ration is small.

Equation (1) tends to linear dependence at high temper­
atures, and temperature dependence of mode position can be 
described by following equation:

T T0( )ω ω χ= +� (2)

where χ is the first order temperature coefficient. By using 
equation (2) to fit the experimental data from 230 K to 350 K, 
we obtained the following values of χ:  −0.0277, −0.0197 
and  −0.031 cm−1 K−1 for B3g, Ag(1) and Ag(2) GeSe Raman 
modes, respectively.

The FWHM associated with the phonon lifetime of Raman 
modes increased with increasing temperature (figure 3(b)) 
and, similar to the peak position, also revealed a nonlinear 
temperature dependence that is described according to fol­
lowing equation:
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where Γ0 is the peak broadening due to lattice disorder [26], 
ω0 is previously determined from the temperature dependence 
of Raman shift phonon frequency at T  =  0 K and C and D 
are anharmonic constants. The FWHM theoretical curve 
also matched very well to the experimental data. Moreover, 
the phonon decay processes responsible for the nonlinear 
behavior of mode width are consistent with the analysis car­
ried out for mode position. The Ag(1) mode width broadened 
with increasing temperature and resulted from optical phonon 
decay into two acoustic phonons, whereas for B3g and Ag(1) 
modes, the main optical decay channel involved two and three 
acoustic phonons. This further confirms that anharmonic 
phonon–phonon interactions were responsible for the temper­
ature dependence of GeSe Raman spectra.

4.  Conclusion

In conclusion, we have performed temperature-dependent 
Raman studies of exfoliated germanium selenide thin films  
and determined their phonon properties in the temperature 
range of 70–350 K. The nonlinearity of temperature depend­
ence of both Raman mode position and width was explained 
by the phenomenon of optical phonon decay into two or three 
acoustic phonons. The first order temperature coefficients were 
extracted and are χ  =    −0.0277,−0.0197 and  −0.031 cm−1 K−1  
for B3g, Ag(1) and Ag(2) modes, respectively. The results 
obtained in this work bring better understanding of phonon 
properties of germanium selenide thin films and could be fur­
ther used to study thermal properties like thermal conductivity 
or thermal boundary resistance on foreign substrates with, for 
example, the use of Raman spectroscopy-based optothermal 
methods [10, 27, 28].
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