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Non-invasive measurement techniques are of utmost importance for characterization of atomically thin materials
to speed up the measurement process while avoiding mechanical damage or contamination of the fragile ma-
terials. Terahertz time-domain spectroscopy (THz-TDS) provides non-contact measurement of the frequency
dependent conductivity of thin films. Here, we expand the applicability of THz-TDS by spatially mapping the
carrier density and mobility of epitaxial graphene grown on silicon carbide. The extracted values are compared
to Hall measurements and agrees well for homogeneously conducting samples.

1. Introduction

Chemical vapor deposition (CVD) of graphene directly on insulating
substrates such as silicon carbide (SiC) [1-4] avoids the transfer process
required for metal catalyzed graphene growth [5,6], which tends to
hamper the electrical properties due to transfer related contaminations
and defects [7-10]. Non-destructive measurements of the electrical
properties of graphene on SiC is a requirement for applications in
electronics and integrated circuits [11-14]. Non-contact methods exist
for measuring the conductivity of the synthesized graphene on SiC such
as microwave impedance and terahertz time-domain spectroscopy
(THz-TDS) [15-17]. However, for high frequency applications the
carrier mobility is also an important parameter [14], which is com-
monly determined after lithographic definition of metallic contacts onto
the graphene [18,19] followed by measurements with a probe station.

Here we show that it is possible to extract the carrier density and
mobility of graphene directly on the SiC growth substrate using non-
contact THz-TDS transmission-mode measurements. Conventional Hall
measurements were performed to verify the measurements extracted
from THz-TDS. Atomic force microscopy (AFM) and Kelvin Probe force
microscopy (KPFM) was conducted to assess the SiC surface topography
and measure the graphene surface potential. Considering the on-going
work on improving THz-TDS reflection-mode measurements for gra-
phene characterization [20,21], the results presented here could po-
tentially prove useful for future in-situ characterization of graphene
during CVD synthesis.

* Corresponding authors.

2. Methods

Graphene was grown by CVD on the Si-face of nominally on-axis
6H-SiC in a hot-wall Aixtron G5 reactor and subsequently intercalated
with hydrogen to obtain quasi-freestanding graphene. The details of the
graphene growth process is described in detail elsewhere [3,17]. The
thickness of the SiC substrates was 495 pum.

The samples were measured by THz-TDS in order to extract the DC
conductivity (opc), scattering time (z), carrier density (n), and carrier
mobility (u) [22-24]. The THz-TDS measurements were conducted in
transmission mode using commercially available equipment (Picome-
trix T-Ray 4000) by scanning the samples in the focal plane of an in-
cident THz beam between a THz transmitter and receiver, see schematic
in Supplementary Fig. S1 [17,25]. The spotsize (full width at half max)
is ~350um at 1 THz. The frequency dependent sheet conductivity
(05(w)) is extracted as [26]

o () = hsic+1f 1 1
ZO TEIIm ((D)

where Tgim is the transmission function (ratio of Fourier transform of
THz waveforms transmitted through graphene-covered SiC and a SiC
reference sample) for the part of the time-domain signal transmitted
directly through the sample, ng;c is the refractive index of 6H-SiC and Z,
is the vacuum impedance. opc is extracted by fitting the real part of
0s(w) from 0.3-1.2 THz to the Drude model, o,(w) = opc/(1 — iwz)
[22,23]. The measurements of opc and 7 are used to calculate n and u
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from the relations [22-24]
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where vy is the Fermi velocity set to 1.15:10°m/s for graphene on SiC
[27,28]. The values of n and u were discarded in pixels where the R2-
value of the fit to the Drude model is below 0.95. The resulting en-
semble of n and u data from each sample was fitted to t location-scale
distributions where the location parameter (equal to median value) is
used for comparison with values from Hall measurements. Additional
fitting parameters are shown in Supplementary Information.

Hall effect measurements were conducted using an Ecopia
HMS3000 Hall Measurement System with a 0.55T magnet. Samples
were contacted in each corner using golden pins in order to measure the
sheet resistance (R;) using the van der Pauw method [29], and subse-
quently extract the Hall carrier density (ny) and Hall mobility (uy) [19].

AFM and KPFM measurements were performed on an NT-MDT
NTEGRA Aura SPM Platform using standard conductive HA_FM/W2C
probes with 20-30 nm W,C tip side coating and < 35 nm tip curvature
radius. AFM topography was acquired on the forward pass, while the
KPFM surface potential was measured on the return pass. A frequency-
modulated (FM) KPFM mode was applied for KPFM measurements due
to its higher spatial resolution compared to amplitude-modulated (AM)
KPFM [30].
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3. Results and discussion

THz-TDS measurements were conducted with a step size of 200 um
on two different samples (S1 and S2, each 15 x 15 mm?) of graphene
grown on SiC. The frequency-dependent conductivity (Fig. 1a) was
extracted from each measurement pixel from both samples and was
subsequently fitted to the Drude-model to determine opc and 7. Sheet
conductivity maps of the two samples are shown in Fig. 1(b,c). The
sheet conductivity is more uniformly distributed in S1 compared to S2
where the sheet conductivity varies by a factor of ~3 across the sample.

We calculated n and p for each measurement pixel from S1 and S2.
Maps of n and g for S1 and S2 are shown in Supplementary Fig. S2.
Histograms of n and u for all the measurement pixels for S1 and S2 show
that the carrier density is lower and the mobility higher for the more
homogeneously conducting S1 compared to S2 (Fig. 2). For S1 we find n
= 6.4810"2cm ™2 and 4 = 5326 cm?/Vs compared to Hall values of
ng = 8.00 -10'2cm ™2 and py = 5720 cm?/Vs. For S2 we find n =
9.37102cm™2 and p = 4365cm?/Vs compared to Hall values of
ng = 8.5510'2cm ™2 and p; = 3413 cm?/Vs. The deviation of 28% for
the mobility from the Hall measurement relative to the THz-TDS
measurement for S2 is similar to previously reported values (33%),
while the agreement between n (n/ny = 0.81) and u (u/py = 0.93)
when comparing Hall and THz-TDS measurements for S1 is much better
compared to previous measurements [22]. The larger deviation be-
tween values measured by Hall and THz-TDS measurements for S2
compared to S1 is likely to relate to the more inhomogeneous con-
ductivity landscape for S2 mapped in Fig. 1c. The Hall measurement
provides a single value that to a certain extent can be regarded as a
weighted average over the entire 15 x 15 mm? sample [31,32]. Since
the electrical current flows from source to drain along paths of least
resistance, and not necessarily equally through all parts of the sample
area, electrical measurements are fundamentally more sensitive to mi-
croscale non-uniformities compared to THz-TDS measurements [23].

AFM and KPFM measurements (Fig. 3 and Supplementary Fig. S3)
were conducted on S1 and S2 to understand the differences in the
electrical properties from the two samples measured by THz-TDS. A
previous study links differences in the surface morphology of the SiC
substrate to conductivity variations in the graphene layer and it was
found that the highest quality graphene was grown on regions of the SiC
substrate with well-defined terraces and shallow step edges [17]. In the
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Fig. 1. (a) Sheet conductivity spectra for graphene on SiC from two different
samples (S1 and S2) together with fits to the Drude model. (b,c) Sheet con-
ductivity maps of 0; averaged from 0.5-0.6 THz for sample (b) S1 and (c) S2.

present work, we find from AFM (Fig. 3) that the surface of S1 consists
of well-defined terraces and steps. In contrast, the topography of S2 is
less ordered and additionally that the sample is severely contaminated
with particulates compared to the cleaner surface seen from S1. The
same trend was observed by comparing AFM images from other regions
on the two samples. The exact nature of the particulates was not de-
termined, but since graphene is extremely sensitive to environmental
variations [33-35], the differences in electrical properties between S1
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Fig. 2. (a) Histogram of carrier density from THz-TDS measurement. (b)
Histogram of carrier mobility from THz-TDS measurement. Dashed lines high-
light values from Hall measurements, while full lines highlight fitted t location-
scale distributions (fitting parameters shown in Supplementary Table S1).

and S2 may well be related to the different degree of contamination
observed on the two samples as well as the variation in substrate to-
pography. The fact that we measure a lower mobility from the con-
taminated S2 with a more disordered substrate surface compared to S1
is consistent with our expectations.

4. Conclusion

THz-TDS was performed on graphene on SiC to measure n and py
using a non-invasive measurement technique. The validity of the
measurement was benchmarked by performing Hall measurements on
the samples. We find a good agreement between n and y from both
measurements (n/ny = 0.81, pu/py = 0.93) when the sample is homo-
geneously conducting, while the THz-TDS and Hall measurements de-
viate more, as expected, when the sample is less homogeneous.
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Fig. 3. AFM images of (a) sample S1 and (b) sample S2.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.mee.2019.03.022.
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