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Abstract: In this work we demonstrate comprehensive studies on graphene 
oxide (GO) and reduced graphene oxide (rGO) based saturable absorbers 
(SA) for mode-locking of Er-doped fiber lasers. The paper describes the 
fabrication process of both saturable absorbers and detailed comparison of 
their parameters. Our results show, that there is no significant difference in 
the laser performance between the investigated SA. Both provided stable, 
mode-locked operation with sub-400 fs soliton pulses and more than 9 nm 
optical bandwidth at 1560 nm center wavelength. It has been shown that 
GO might be successfully used as an efficient SA without the need of its 
reduction to rGO. Taking into account simpler manufacturing technology 
and the possibility of mass production, GO seems to be a good candidate as 
a cost-effective material for saturable absorbers for Er-doped fiber lasers. 
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1. Introduction 

Ultra-short pulse fiber lasers operating in the near infrared region have found many 
applications in industry and basic science such as laser micromachining [1], micro-surgery 
[2], optical metrology [3], optical imaging [4] and THz generation [5]. In 2009, Bao et al. and 
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Hasan et al. have demonstrated a new technique of generating ultra-short pulses from 
passively mode-locked (PML) fiber lasers by incorporating graphene-based saturable 
absorbers [6,7]. Since then, various setups have been proposed, utilizing mainly erbium-
doped fibers [8–22]. So far, many different techniques of obtaining graphene for PML have 
been used. The most common are: chemical vapor deposition (CVD), chemical 
functionalization and mechanical exfoliation. The CVD-graphene may be grown on various 
metallic substrates (e.g. Ni, Cu) and afterwards easily transferred onto fiber connectors 
forming a saturable absorber [6,8–11]. CVD technique allows to precisely control the number 
of grown layers and, in consequence, tune the optical parameters of the SA [6,11]. Graphene 
flakes might also be obtained by direct exfoliation of natural graphite by ultrasonification it in 
various organic solvents e.g. dimethyloformamide (DMF) [12]. Obtained graphene 
suspension is imposed onto flat fiber connector by optical deposition. Graphite can be also 
exfoliated in aqueous solutions with surfactant e.g. sodium deoxycholate. Then the water 
suspension containing graphene flakes is mixed with polyvinyl alcohol (PVA) [13–15]. Such 
homogenous polymer solutions may also be applied to the optical substrates or fiber 
connectors and slowly dried to obtain an uniform composite layer. Mechanical exfoliation (or 
so called “scotch tape method”) is obviously the easiest method of obtaining graphene flakes 
useful for mode-locking of fiber lasers [16–18]. Although, mechanical exfoliation does not 
allow to control the layer thickness and the repeatability of the process is very poor. 

Very often graphene flakes (rGO) for saturable absorbers are obtained by chemical 
reduction of so called graphene oxide (GO) [19–21]. Also, for this purpose polymer 
composite e. g. polyvinylidene fluoride (PVDF)/rGO can be used [22]. GO is an atomically 
thin sheet of carbon covalently bonded with functional groups containing oxygen. Therefore, 
it contains sp

2
 and sp

3
 hybridized carbon atoms. Usually it is used as a precursor for rGO, but 

recently it has attracted much attention due to its optical properties [23]. It has been shown, 
that GO, similar to rGO, exhibits saturable absorption [24] which makes it suitable for passive 
mode-locking of lasers. Femtosecond pulse generation with the usage of GO saturable 
absorbers was recently demonstrated by Bonaccorso et al. [25], Liu et al. [26] and Xu et al. 
[27]. The pulse duration obtained by Xu et al. (200 fs) is comparable to that obtained with 
flake-graphene solution [12]. Promising results show, that GO can successfully compete with 
graphene as saturable absorber. 

Nevertheless, it is currently impossible to objectively compare the performance of fiber 
lasers mode-locked with GO and graphene (e.g. rGO), since there are no direct comparisons 
of both saturable absorbers. In our work we perform a detailed comparison between two types 
of SA: based on graphene oxide and reduced graphene oxide. In order to provide a reliable 
comparison, both saturable absorbers were tested in the same laboratory conditions (the same 
laser resonator). The GO and rGO layers were deposited on fused silica windows and placed 
inside the cavity, forming a free-space coupled, transmission saturable absorber. The results 
show, that there is almost no difference between the radiation parameters achieved with GO 
and rGO. The optical bandwidth and pulse duration remain unchanged. It may suggest that 
the presence of sp

3
 hybridized carbons in the lattice does not completely destroy the nonlinear 

optical properties of graphene. In consequence it may not be necessary to perform a 
complicated GO reduction process in order to fabricate an efficient saturable absorber. 

2. GO and rGO preparation and characterization 

2.1 Sample preparation 

Graphene oxide (GO) was prepared through a modified Hummers method from expanded 
acid washed graphite flakes [28]. The synthesis involves the following steps. First, 5 g of 
graphite was added into 125 ml of H2SO4. Next, 2.75 g of NaNO3 was added before start of 
the reaction. Subsequently, the beaker with reagents was put into water/ice bath in order to 
keep it below 5°C. 15 g of KMnO4 was added in portions into the mixture, which was 
vigorously stirred. After addition of the oxidant, the beaker was heated and kept at 30-35°C 
with continuous stirring. Afterward it was left at room temperature overnight. In the next step, 
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the deionized water was added so that the temperature did not exceed 35°C. The beaker was 
put into a water bath at a temperature of 35°C and stirred. The mixture was then heated to 
95°C and kept under these conditions for 15 min. To stop the reaction 280 ml of deionized 
water and 5 ml of H2O2 were added. The mixture was then rinsed with HCl solution to 
remove the sulfate ions and with deionized water in order to remove chloride ions. 

Reduced graphene oxide (rGO) was obtained with the use of benzylamine as reducing and 
functionalizing agent [29] and sodium borohydride as reducing agent [30,31]. Such 
combination of reductors was used for the first time, to the best of our knowledge. 25 mg of 
GO were dispersed in 150 ml of deionized water, followed by addition of 3 ml of 
benzylamine. The mixture was heated to 90°C and maintained at this temperature over 2 
hours with simultaneous stirring on a magnetic stirrer. Such obtained black dispersion was 
rinsed three times with deionized water by centrifugation. The precipitation was dispersed in 
deionized water by ultrasonicator. After this procedure 1.5 g of NaBH4 and 1 g of KOH were 
added into the suspension and it was heated to 70°C with simultaneous stirring over a 2-hours 
period. The obtained rGO was rinsed as previously and dispersed in 100 ml of N-
methylpyrrolidone by ultrasonication to prevent rGO flakes aggregation [32]. 

In order to characterize the chemical parameters (by SEM, XPS and Raman spectroscopy) 
of GO and rGO it was deposited from suspension on Si/SiO2 substrates by immersion and 
dried at 80°C. To characterize its optical parameters and investigate the morphology by 
atomic force microscopy (AFM), GO and rGO were deposited on the fused silica windows 
using self-made applicator and dried slowly at 40°C. Photographs of the ½-inch plates are 
shown in Fig. 1. 

 

Fig. 1. Photograph of the ½-inch fused silica windows with GO and rGO layers. 

2.2 Sample characterization 

Morphological properties were investigated with scanning electron microscopy (SEM), using 
Auriga CrossBeam Workstation (Carl Zeiss). AFM was acquired in tapping mode using 
Veeco Nanoman V microscope with Bruker MPP-11100-10 silica probe. Elemental 
composition analysis was carried out by X-ray photoelectron spectroscopy (Microlab 350 
spectrometer) using MgKa non-monochromated radiation (1253.6 eV, 200 W) as the excitation 
source. The XPS spectra were fitted using the Advantage (Thermo Scientific) software. The 
microstructure was characterized by Raman spectroscopy (Dilor XY-800 spectrometer), using 
514 nm wavelength of an argon-ion laser. 

Figure 2 shows SEM images of GO and chemically reduced GO. Single flakes of GO may 
be observed. Graphene oxide flakes have relatively large surface (with the edge of sheets 
about the size of micrometers) and its morphology resembles thin curtain. These parameters 
indicate very good exfoliation of graphite during oxidation process. The rGO solution had a 
higher concentration than that of GO and therefore the sheets applied on a Si/SiO2 substrate 
overlap more and seem to form a compact structure. The surface morphology resembles 
strongly folded curtain, what indicates that rGO flakes are overlapped rather than aggregated. 
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Fig. 2. SEM images of GO (a) and reduced GO (b). 

Raman spectroscopy is widely used to characterize crystal structure, disorder and defects 
in graphene-based materials [33]. For example, the reduction process of GO can manifest 
itself in Raman spectra by the changes in relative intensity of two main peaks: D and G [34]. 
We use this information to verify the reduction process. Figure 2 shows the Raman spectra of 

GO and reduced GO. The D peak of GO located at 1352 cm
−1

 and at 1350 cm
−1

 for rGO 
streams from a defect-induced breathing mode of sp

2
 rings [29]. It is common to all sp

2
 

carbon lattice and arises from the stretching of C-C bond. The G peak at around 1600 cm
−1

 for 

GO and at 1599 cm
−1

 for rGO is due to the first order scattering of the E2g phonon of sp
2
 C 

atoms [29]. The intensity of the D band is related to the size of the in-plane sp
2
 domains [33]. 

The increase of the D peak intensity indicates forming more sp
2
 domains. The relative 

intensity ratio of both peaks (ID/IG) is a measure of disorder degree and is inversely 
proportional to the average size of the sp

2
 clusters [33,35]. As it is seen in Fig. 3, the D/G 

intensity ratio for rGO is larger than that for GO (1.70 for rGO and 1.21 for GO). This 
suggest that new (or more) graphitic domains are formed and the sp

2
 cluster number is 

increased [29] after process described above, showing good reduction efficiency of 
benzylamine and sodium borohydride. 

 

Fig. 3. Raman spectra of GO (a) and reduced GO (b). Both Raman spectra were recorded with 
514 nm laser line and with the low laser power (1 mW) 

X-ray photoelectron spectroscopy (XPS) was employed to analyze the structure of 
graphene oxide and reduced graphene oxide and also to confirm the results obtained by the 
Raman spectroscopy. It is a surface-sensitive analytical technique that is useful to determine 
the chemical environment of atoms, in this case of carbon atoms in rGO structure. Figure 4 
shows C1s XPS spectra of GO and Fig. 5 presents the curve-fitted C1s of GO reduced with 
the use of benzylamine and sodium borohydride (respectively). Table 1 provides an analysis 
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of the spectrum peaks: the most probable origin of the peaks with their binding energies and 
atomic percentage of each group. 

 

Fig. 4. XPS spectra of GO and reduced GO 

 

Fig. 5. C 1s XPS spectra of (a) GO and (b) reduced GO. 

Table 1. XPS data of GO 

GO Peak BE (eV) At. % Bond 
C1s 285.0 48.6 C – C and C = C 
C1s 287.0 44.7 C – O (epoxy, hydroxyl groups) 
C1s 288.2 6.7 C = O (carbonyl groups) 

Table 2. XPS data of rGO 

rGO Peak BE (eV) At. % Bond 
C1s 285.0 69.0 C – C and C = C 
C1s 286.6 17.5 C-O (hydroxyl, epoxy groups), C-N 
C1s 288.2 13.5 C = O (carbony groups) 

All spectra were calibrated to the position of the C-C peak of 285.0 ± 0.2 eV. The 
resolution of XPS spectrometer does not allow to analyze peaks of C-C and C = C separately, 
therefore it will be treated as a single signal and compared with peaks corresponding to the 
carbon atoms bounded with other groups. C1s XPS spectra of GO indicates considerably 
degree of oxidation that means the presence of different oxygen functional groups in GO 
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structure (e.g. carbonyl, epoxy, hydroxyl groups) [31,36]. Peaks corresponding to the 
covalent bonds of carbon and oxygen atoms are more intense for GO than for rGO. The 
CC/CO intensity ratio of GO is much lower (0.95) than CC/CO ratio of reduced GO (2.23), 
where “CC” refers to the sum of C-C and C = C bonds and “CO” applies to all combinations 
of carbon and oxygen atoms bonds. Moreover, “CC” intensity of rGO was calculated using 
the sum of C-N and C-O bonds, because it was not possible to separate C-O and C-N peaks 
by our spectrometer. After the separation of the peaks the ratio might be higher. These results 
suggest significant removal of oxygen functional groups. After reduction process the new 
peak (400 eV) associated with N 1s (Fig. 4) and the C-N band (Fig. 5(b)) was created. This 
reflects the simultaneous functionalization of GO with benzylamine [29]. 

The AFM scan images of GO and rGO are presented in Fig. 6(a) and Fig. 6(b), 
respectively. In the case of GO, the surface is relatively rough, since the flakes are forming 
irregular stacks. Mono- and bi-layer flakes may be seen on the rGO sample with few µm 
length and 1-2 nm height. Due to local contaminations on the sample, the investigated area 
contained some peaks with height at the level of 150 nm. In order to improve the readability 
of the rGO picture, those peaks were scaled down to 10 nm, causing white spots on the image. 

 

Fig. 6. AFM scan image of the GO (a) and rGO (b) surface. 

 

Fig. 7. Measured linear transmission spectrum (a) and power-dependent transmission (b) of the 
GO and rGO 

Figure 7(a) shows the measured transmission of GO and rGO in the spectral range from 
1200 to 1600 nm, performed using a broadband white light source and an optical spectrum 
analyzer. It can be seen, that the rGO sample absorbs around 12% of incident light (average 
loss at the level of 0.48 dB). The transmission of GO is not flat in the measured range and the 
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losses vary from 0.7 to 0.55 dB. The wavelength-dependent transmission is a typical feature 
of GO and was already observed [37,38]. It might be caused by the presence of functional 
groups containing oxygen, which may absorb shorter wavelengths more likely. In order to 
determine the modulation depth of the saturable absorbers, we have performed a power-
dependent transmission measurement in a setup similar to that in Ref [2], using a 169 MHz 
mode-locked laser with 150 fs pulse duration (1560 nm) and 2.1 mW average output power as 
a pump source. The signal was directed to the SA through a variable optical attenuator 
(VOA). The results of the power-dependent transmission are plotted in Fig. 7(b). The 
measurement results may be fitted with a two-level saturable absorber model curve, given by: 

 0( ) ,

1
ns

sat

I
I

I

= +

+

α
α α  (1) 

where α(I) is the absorption coefficient, I is the light intensity, Isat is the saturation intensity, 

α0 is the modulation depth and αns denotes the non-saturable losses. Based on the results, the 
modulation depths of rGO and GO are 21% and 18%, respectively. 

3. Laser setup and results 

The experimental setup of the mode-locked laser is presented in Fig. 8. The resonator consists 
of a 30 cm long highly-erbium doped fiber (nLight Liekki Er110), a fiber isolator, 980/1550 
single-mode WDM coupler, in-line fiber polarization controller and a 10% output coupler. 
The saturable absorber (GO or rGO) on fused silica substrate is inserted between two GRIN-
lens collimators (200 mm working distance). It was placed on a three-axis positioning stage in 
order to adjust the position of the sample. 

 

Fig. 8. Experimental setup of the mode-locked laser. 

The laser is counter-directionally pumped by a 980 nm laser diode (Oclaro LC96U). The 
total length of the fibers in the resonator is approx. 3.1 m. There are only two types of fibers 
used in the cavity: erbium-doped fiber (EDF) with positive group velocity dispersion (GVD): 

0.012 ps
2
/m and single mode fiber (SMF) with −0.022 ps

2
/m GVD, thus, the total net 

dispersion is anomalous (−0.06 ps
2
). The laser performance was observed using optical 

spectrum analyzer (Yokogawa AQ6370B), 350 MHz digital oscilloscope (Hameg 
HMO3524), 7 GHz RF spectrum analyzer (Agilent EXA N9010A) coupled with a 30 GHz 
photodetector (OptiLab PD-30), and an interferometric autocorrelator. 

After launching the pump diode at low power (below 30 mW), the laser starts to operate 
in the CW regime. The threshold pump power for mode-locking was 37 mW and 33 mW for 
the GO and rGO, respectively. In order to provide best stability and performance, all 
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measurements of the GO laser were done with 95 mW (GO) and 82 mW (rGO) pumping 
power. The fused silica plates used as substrates for both SA were uncoated. Hence, when the 
SA was inserted inside the laser resonator perpendicular to the optical axis, parasitic etalon 
effect was observed and mode-locking could not start due to strong spectral filtering. In order 
to eliminate the back-reflections and enable mode-locking, the SA was placed near the 
Brewster angle. As a result, the etalon effect was eliminated and pulsed operation was 
achieved after a slight alignment of polarization controller. Since the Brewster-angled fused 
silica plate acts as a weak polarizer, the nonlinear polarization rotation mechanism might be 
supported in such configuration. In order to confirm, that the mode-locking is an effect of the 
saturable absorption in GO/rGO, not nonlinear polarization rotation, we have firstly inserted a 
clean fused silica window (without graphene). No signs of mode-locking were observed at all 
possible positions of the polarization controller. During operation the SA was moved in all 
three X-Y-Z axes without any mode-locking perturbations. The pulse operation was lost when 
the optical beam was positioned outside the GO and rGO layers (on the clean area of the 
plates). 

The recorded optical spectra of the laser are depicted in Fig. 9. Both have comparable, 
soliton-like shapes with visible Kelly’s sidebands and full width at half maximum (FWHM) 
bandwidth at the level of 9.3 nm (GO) and 9.2 nm (rGO). The GO spectrum is slightly blue-
shifted due to higher insertion losses of the saturable absorber. Both do not have any signs of 
parasitic CW lasing. 

 

Fig. 9. Comparison of the optical spectra with GO (red line) and RGO (blue line) 

 

Fig. 10. RF spectra of the laser with GO (a) and rGO (b) recorded with 3 MHz span and 620 
Hz RBW. 
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Figure 10 illustrates the RF spectrum of the laser measured with 620 Hz resolution 
bandwidth (RBW) and 3 MHz span. The signal to noise ratio (SNR) is at the level of 60 dB in 
both cases and the differences between two samples are imperceptible. The measured 
repetition frequency of the resonator is 58 MHz. The broad spectrum of harmonics (with 7 
GHz span) generated by the laser is presented inset the graphs in Fig. 10. 

 

Fig. 11. Autocorrelation traces of the 390 fs pulses obtained with GO (a) and rGO (b) 

The autocorrelation traces of the output pulses are depicted in Fig. 11. In both cases the 
pulse width is the same and is equal to 390 fs (assuming a sech

2
 pulse shape, typical for 

soliton lasers). No signs of pulse pair generation or pulse breaking were observed. The 
calculated Time-Bandwidth Products (TBP) are 0.448 and 0.442 for GO and rGO, 
respectively. 

Assuming the fiber nonlinear coefficient γ = 3 W
−1

km
−1

 and the average laser resonator 

dispersion β2 = −20ps
2
/km, we may determine the soliton order N using the formula given by 

[39]: 

 
2

2

,
P

N
⋅ ⋅

=
γ τ

β
 (2) 

where P denotes the pulse peak power (see Table 3) and τ is the FWHM pulse duration 
divided by 1.762. The N value were at the level of 0.79 and 0.75 for laser with GO and rGO, 
respectively. Both of them meet the stability criteria 1.5>N>0.5 for fundamental solitons [39]. 
The comparison between all achieved laser parameters are summarized in Table 3. 

Table 3. Summary of the laser parameters with GO and rGO 

Parameter 
Value 

Graphene Oxide (GO) Reduced Graphene Oxide (rGO) 
FWHM bandwidth 9.3 nm 9.2 nm 

Pulse duration 390 fs 390 fs 
TBP 0.448 0.442 

Pulse Energy 33.7 pJ 29.8 pJ 
Peak Power 86.4 W 76.4 W 

Soliton Order N 0.79 0.75 
RF SNR 60 dB 60 dB 

Pump power 92 mW 82 mW 
Output power 1.96 mW 1.68 mW 

Center wavelength 1558 nm 1559 nm 

The performance of the mode-locking with both investigated saturable absorbers is 
comparable to previous reports on soliton fiber lasers, even with those on mono- or bi-layer 
graphene grown by CVD [1,6,8]. The shortest pulse reported so far from an all-anomalous 
dispersion cavity is 415 fs [8], achieved with mono-layer graphene SA with over 60% 
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modulation depth. We believe, that in our setup the pulse duration might be reduced by 
managing the total dispersion (achieving a near-zero dispersion cavity). 

4. Summary and conclusions 

Summarizing, we have demonstrated comparative experiments with Er-doped fiber laser 
mode-locked by two saturable absorbers: based on graphene oxide and reduced graphene 
oxide. Prepared absorbers were fully characterized using: Raman spectroscopy, XPS, AFM 
and absorption measurements. Obtained results confirm that used oxidation and reduction 
method provide saturable absorbers with relatively high modulation depth (21% and 18% for 
rGO and GO, respectively) and low non-saturable losses (around 15% for both SA). Both 
absorbers supported mode-locked operation in presented laser configuration. Lasers generated 
soliton pulses with 390 fs duration with over 9 nm of FWHM bandwidth. There were no 
significant differences between laser parameters obtained in both investigated set-ups. 
Described technology of oxidation of graphite to graphene oxide is a reproducible method, 
that allows to obtain material with well-defined structure. GO is a semi-product in the 
synthesis of rGO and therefore GO is easier and faster to obtain than graphene. GO forms 
stable aqueous dispersion and does not require the use of any organic compounds- it can be 
directly applied on the fused silica windows. Reduced graphene oxide flakes (as well as 
exfoliated graphene) because of its hydrophobic properties, aggregates in water and must be 
transferred to the proper, usually toxic organic solution. Beyond toxicity, the price of such 
prepared rGO increases significantly. Comparing the scale to the cost of production and 
including comparable effect of GO and rGO in the use as saturable absorber for fiber laser, 
GO seems to be the most promising material. 
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