Temperature Evolution of Phonon Properties in Few-Layer Black Phosphorus

Anna Łapińska, Andrzej Taube, Jaroslaw Judek, and Mariusz Zdrojek*

Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland

Supporting Information

ABSTRACT: We present the results of Raman measurements of few-layer black phosphorus in a temperature range between 4 and 400 K. The BP Raman mode positions, widths, and intensity ratios exhibit apparent nonlinear temperature dependences, which we attributed to the phenomenon of optical phonon decay into two or three acoustic phonons. These results pave the way for a deeper understanding of the phonon and thermal properties of black phosphorus.

INTRODUCTION

The recently rediscovered1,2 black phosphorus (BP) is the newest member of the two-dimensional atomic crystal family.3 Black phosphorus is characterized by many interesting and unique properties4 that distinguish it from other two-dimensional materials such as graphene or transition metal dichalcogenides (TMDCs). Black phosphorus is a direct band gap semiconductor both in bulk and in its monolayer form. The band gap of BP decreases with an increase in the number of layers, from approximately 1.45 eV for a monolayer to approximately 0.3 eV for bulk.1 Black phosphorus is characterized by a very high hole mobility compared with TMDCs that can theoretically2 reach 26 × 10^3 cm^2/(V s). Exponentially derived mobilities of up to 1300 cm^2/(V s) at room temperature were demonstrated in high-quality BP flakes sandwiched between hexagonal boron nitride sheets.5 At low temperatures, the mobility becomes even larger, thus enabling the observation of quantum oscillations.6 The high mobility and finite band gap allow the fabrication of high-quality transistors with large I_on/I_off ratios of up to 10^5 and radio frequency operation with a maximum oscillation f_max and cutoff f_c frequency of 12 and 20 GHz after de-embedding,7 respectively. It thus seems that BP is the missing link between graphene and the TMDCs family.1 Moreover, as a result of its puckered orthorhombic structure (Figure 1a), BP is distinguished by the unique in-plane anisotropy of its optical,2,11,12 thermal,13–15 and electrical properties.2,6–18 These introduce the possibility of the fabrication of new devices with novel functionality.19

To characterize nanomaterials for various applications, Raman spectroscopy is used as a reliable and nondestructive method.20–23 For instance, the temperature-dependent Raman measurements can be used as a tool to investigate vibration, transport, phonon–phonon properties, or electron–phonon interactions.24,25 In the case of BP, the angular dependence of the Raman spectrum can be used as a simple tool for the determination of the crystalline orientation of the investigated flake.11 The Raman optothermal method,26 in which the temperature dependence of the Raman mode position is used, was applied to determine the thermal conductivity of the suspended BP flake.13

There have been several studies on the temperature dependence of the Raman spectra of black phosphorus.13,14,27 Most of the studies, however, considered only temperatures above 300 K. In those studies, only linear changes of the Raman mode positions with temperature were observed.

Here, we present the evolution of the Raman spectrum of few-layer BP in an extended temperature range from 4 to 400 K. We observe and describe, for the first time, the nonlinear temperature dependence of the BP Raman mode positions, which we attribute to optical phonon decay. In contrast to other works, we also present the effect of the temperature on the Raman mode width and intensity ratios. Our findings are important for further studies on the phonon and thermal properties of black phosphorus and novel devices made of it.

EXPERIMENTAL SECTION

Figure 1a shows a perspective view of the crystalline structure of black phosphorus. The puckered BP single layer consists of two phosphorus atomic planes, in which each phosphorus atom is bound to three adjacent atoms. Subsequent layers are bound to each other by weak van der Waals interactions. The distance...
between phosphorus atoms in consecutive single layers is approximately 5.3 Å. Few-layer BP flakes were fabricated on a SiO2 (275 nm)/Si substrate by a conventional mechanical exfoliation technique from bulk single crystal (Smart Elements). Particular attention was given to the time when the flakes were exposed to the air because BP is known to be a highly environmentally susceptible material. Recent works have shown the time-dependent instability of the BP flakes caused by water, oxygen, and light flux, which results in partial oxidation to \(P_xO_y \) at the BP surface. It was also demonstrated that degradation proceeds only if the black phosphorus is exposed to the above factors simultaneously and that the instability of the black phosphorus flake is thickness dependent; that is, the thinner the sample is, the faster the degradation process will proceed.

There is no evidence of degradation if the BP is exposed to oxygen and water in the dark, and exposure to a high photon flux or to oxygen or water (separately) does not result in surface degradation if the BP is placed in a vacuum. To avoid the degradation process, the pristine sample could be placed in a vacuum or passivated by other materials. Thus, after cleaving, the flakes were immediately inspected using optical microscopy and atomic force microscopy (AFM). Then, the samples were transferred to a microscope cryostat and maintained under vacuum. The total time between cleaving and putting the sample under vacuum was <30 min. An AFM image of the investigated BP flake is depicted in Figure 1b. The thickness of the investigated flake, as determined from the AFM image, was approximately 6 nm (Figure 1c). This corresponds to \(\sim 9-10 \) phosphorene layers, considering a possible adsorbate interfacial layer between the flake and the SiO2/Si substrate. The AFM image also shows no sign of BP flake degradation, and visible small spots are probably the effect of tape residues.

The unpolarized Raman spectra were collected using an Ar laser 514 nm line and a long working distance 50× objective in backscattering geometry. The laser power, calibrated on the sample, was <0.2 mW to avoid excessive sample heating. Temperature-dependent measurements were carried out under vacuum by heating and cooling the sample in a liquid helium cooled microscope cryostat, with the temperature controlled between 4 and 400 K (temperature stability was approximately 0.1 K). To minimize the statistical error, the measurements were performed several times at each temperature point and in different places on the flake. Raman mode parameters were obtained from the Lorentzian fit to the experimental data using the Levenberg-Marquardt algorithm (see the Supporting Information for details of error estimation).

In addition, the same measurements were also performed on thicker \(\sim 9.5 \) nm, see Figure S1) flakes from the same sample.

RESULTS AND DISCUSSION

Figure 1d shows the room temperature Raman spectra of the investigated few-layer black phosphorus on a SiO2/Si substrate. According to group theory, there are 12 phonon modes in BP (D\(_{2h}\) space group): six Raman-active modes \((2A_g,B_1g,B_2g, \text{and } 2B_3g) \), five IR-active modes \((2B_{1u},2B_{2u}, \text{and } B_{3u}) \), and one silent mode \((A_u) \). In the backscattering measurement geometry, three main Raman modes are observed: \(A_g \) and \(A_g' \) at ca. 363, 440, and 468 cm\(^{-1}\), respectively. Figure 1e presents the atomic displacements corresponding to the observed Raman modes. The \(A_g \) mode results from the out-of-plane vibration of phosphorus atoms along the c-axis. The \(B_{2g} \) and \(A_g' \) modes result from the in-plane vibration of phosphorus atoms along the b-axis (armchair) and a-axis (zigzag), respectively.
Figure 2 shows the normalized Raman spectra of few-layer BP flake taken at selected temperatures. As shown, the positions of the Raman modes tend to saturate in the low-temperature range. In contrast, in the high-temperature range, increasing the temperature causes decreases in the Raman mode positions. The detailed temperature dependence of the Raman modes is depicted in Figure 3.

The A_{2g} and B_{2g} modes are shifted by about 7.3 and 7.4 cm$^{-1}$, respectively, and the A_{1g} mode is shifted by about 4.35 cm$^{-1}$ for temperature change from 4 to 400 K. Generally, the temperature dependence of Raman modes position is related to the electron–phonon, anharmonic phonon–phonon interactions, or thermal expansion.24 The temperature dependence of the Raman mode positions is often described by a first-order temperature coefficient according to the equation33–35

$$\omega(T) = \omega_0 + \chi T$$ \hspace{1cm} (1)

where ω_0 is the phonon frequency at a temperature interpolated to 0 K and χ is the first-order temperature coefficient. In our case, this relationship can be applied only for data above 250 K.

The calculated first-order temperature coefficients χ for each of the modes, along with the reported literature values, are presented in Table 1. The χ values are -0.0164, -0.0271, and -0.0283 cm$^{-1}$/K for the A_{1g}, B_{2g}, and A_{2g} modes, respectively. The obtained χ values of the in-plane modes are higher than those of the out-of-plane mode of few-layer BP. The obtained values are in good agreement with the other reported values listed in Table 1. The small differences between our results and those from other groups may be due to different sample preparation procedures or different thicknesses of BP flake, as noted in the footnote in Table 1. Similar results were obtained for thicker (~9.5 nm) flake (see Table S1).

Below 250 K, the strong nonlinearity of all Raman mode positions as a function of temperature is apparent, and the linear description is no longer valid. A much better description of $\omega(T)$ in the whole temperature range can be obtained using the approach developed by Balkanski et al.37 This approach is based on the phenomenon of optical phonon decay into two (three-phonon process) or three (four-phonon process) acoustic phonons with equal energies, stemming from the cubic and quartic anharmonicity of the lattice potential. Thus, the temperature dependence of the Raman mode positions can be described by the relationship

$$\omega(T) = \omega_0 + A \left(1 + \frac{2}{e^{\frac{\Delta}{T}} - 1} \right) + B \left(1 + \frac{2}{e^{\frac{\Delta}{T}} - 1} + \frac{3}{(e^{\frac{\Delta}{T}} - 1)^2} \right)$$ \hspace{1cm} (2)

where $x = \hbar \omega_0 / 2k_b T$, $y = \hbar \omega_0 / 3k_b T$, ω_0 is the phonon frequency at $T = 0$ K, \hbar is the Planck constant divided by 2π, k_b is the Boltzmann constant, and A and B are anharmonic constants. The fit of eq 2 to the Raman mode positions taken from experimental data is presented in Figure 3. Calculated values of the anharmonic constants are presented in Table 2. As shown, the ratio of the constants A/B is high, due to the much larger probability of occurrence of optical phonon decay into two acoustic phonons than into three acoustic phonons. At high temperatures, taking only the first terms of the Taylor expansion, eq 2 tends to a linear dependence, similar to eq 1. A similar nonlinear temperature dependence of Raman mode positions was also observed for other 2D materials such as MoS$_2$ monolayers38 and ReSe$_2$ and SnSe$_2$ nanosheets.39 In addition, nonlinear temperature dependence of Raman mode position was also observed for ~9.5 nm thick flake (see Figure S2) and the values of the anharmonic constants were similar (at

Figure 3. Temperature dependence of black phosphorus Raman mode positions in 4–400 K range. The solid line represents a fit to eq 2, and the dotted line corresponds to a fit to eq 1 (calculated for the 250–400 K temperature range).
The broadening of the Raman mode width, as in the case of the fwhm of the A_2^g mode, was less than the error of the fwhm determination that remain unclear. The change of the line width for A_1^g and B_2^g modes was less than the error of the fwhm determination (~ 0.5 cm$^{-1}$). Instead of the temperature dependence of the fwhm, we calculated the temperature dependence of their normalized intensity ratio. The intensity ratio of the Raman modes, as fwhm, is related to the phonon lifetime and their population; in our case, it allowed to reduce the effect of the error determination of the peak width. Figure 4b shows the calculated intensity of the A_1^g and B_2^g modes, normalized to the A_2^g mode intensity. The intensity ratio of the B_2^g mode to the A_2^g mode increased by about 0.11 and the intensity ratio of the B_2^g mode to the A_1^g mode by about 0.22 when the temperature increased from 4 to 400 K. As can be noted, the intensity ratio of the B_2^g mode to the A_2^g mode is higher than that of the B_2^g mode to the A_1^g mode. We also observe that the intensity ratio increases with increasing temperature in a similar manner as the width of the A_2^g mode. However, because the phonon properties of black phosphorus are still not fully understood, the explanation of this observation needs deeper theoretical insight, which is beyond the scope of this work.

CONCLUSIONS

In conclusion, we have investigated the temperature-dependent (temperature range 4–400 K) Raman spectra of few-layer black phosphorus flake supported on a SiO$_2$/Si substrate. In contrast to other works, a nonlinear dependence of the position of the three main Raman modes (A_1^g, B_2^g and A_2^g) was observed. The temperature dependence of the Raman mode position in the entire temperature range used was explained by the phenomenon of optical phonon decay into two or three acoustic phonons. At higher temperatures (above 250 K), the Raman mode position tended to linear dependence, and first-order temperature coefficients were calculated ($\chi = -0.0164$, -0.0271, and -0.0283 cm$^{-1}$/K for A_1^g, B_2^g and A_2^g modes, respectively). A nonlinear temperature dependence was also observed in the case of the fwhm of the A_2^g mode and the intensity ratios of the A_1^g and B_2^g modes normalized to the A_2^g mode. Our results can be used in further study of the thermal properties of black phosphorus.

Table 1. First-Order Temperature Coefficients of Few-Layer Black Phosphorus Raman Modes

<table>
<thead>
<tr>
<th>mode</th>
<th>A_1^g</th>
<th>B_2^g</th>
<th>A_2^g</th>
</tr>
</thead>
<tbody>
<tr>
<td>this worka</td>
<td>-0.0164 ± 0.0003</td>
<td>-0.0271 ± 0.0005</td>
<td>-0.0283 ± 0.0004</td>
</tr>
<tr>
<td>this workb</td>
<td>-0.0172 ± 0.0002</td>
<td>-0.0281 ± 0.0002</td>
<td>-0.0276 ± 0.0006</td>
</tr>
<tr>
<td>ref 14c</td>
<td>-0.008</td>
<td>-0.013</td>
<td>-0.014</td>
</tr>
<tr>
<td>ref 27d</td>
<td>-0.023</td>
<td>-0.018</td>
<td>-0.023</td>
</tr>
<tr>
<td>ref 13e</td>
<td>-0.01895</td>
<td>-0.02434</td>
<td>-0.02316</td>
</tr>
<tr>
<td>ref 17f</td>
<td>-0.02175</td>
<td>-0.02877</td>
<td>-0.027</td>
</tr>
</tbody>
</table>

aCalculated for 250–400 K temperature range, thickness ~ 6 nm. bCalculated for 250–400 K temperature range, thickness ~ 9.5 nm. cSiO$_2$/Si supported, thickness 4.5 nm. dSiO$_2$/Si supported, thickness 4 nm. eSiO$_2$/Si supported, thickness 5.5 nm. fSuspended, thickness 9.5 nm. armchair polarization, 296–345 K temperature range. gSuspended, thickness 9.5 nm, zigzag polarization, 296–345 K temperature range.

Table 2. Values of Anharmonic Constants Obtained from the Temperature-Dependence Analysis of Raman Mode Positions

<table>
<thead>
<tr>
<th>mode</th>
<th>ω_b (cm$^{-1}$)</th>
<th>A (cm$^{-1}$)</th>
<th>B (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1^g</td>
<td>366.5 ± 0.18</td>
<td>-0.61 ± 0.2</td>
<td>-0.188 ± 0.03</td>
</tr>
<tr>
<td>B_2^g</td>
<td>448.9 ± 0.17</td>
<td>-4.21 ± 0.4</td>
<td>-0.06 ± 0.02</td>
</tr>
<tr>
<td>A_2^g</td>
<td>476.4 ± 0.25</td>
<td>-3.26 ± 0.28</td>
<td>-0.28 ± 0.05</td>
</tr>
</tbody>
</table>

$$
\Gamma(T) = C + \kappa T \left(1 + \frac{2}{e^{\frac{T}{kT}} - 1}\right)
$$

Where $x = \hbar \omega_b / 2k_bT$, κ is an anharmonic constant, and C is peak broadening related to phonon confinement and inhomogeneous strain. The parameters obtained from the fit of eq 1 to experimental data were as follows: $C = 4.39 \pm 0.1$ and $\kappa = 0.51 \pm 0.15$. Although the temperature dependence of the fwhm of the A_2^g mode is visible, it is relatively small compared with other 2D materials such as MoS$_2$ for reasons that remain unclear. The change of the line width for A_2^g and B_2^g modes was less than the error of the fwhm determination (~ 0.5 cm$^{-1}$). Instead of the temperature dependence of the fwhm, we calculated the temperature dependence of their normalized intensity ratio. The intensity ratio of the Raman modes, as fwhm, is related to the phonon lifetime and their population; in our case, it allowed to reduce the effect of the error determination of the peak width. Figure 4b shows the calculated intensity of the A_1^g and B_2^g modes, normalized to the A_2^g mode intensity. The intensity ratio of the B_2^g mode to the A_2^g mode increased by about 0.11 and the intensity ratio of the B_2^g mode to the A_1^g mode by about 0.22 when the temperature increased from 4 to 400 K. As can be noted, the intensity ratio of the B_2^g mode to the A_2^g mode is higher than that of the B_2^g mode to the A_1^g mode. We also observe that the intensity ratio increases with increasing temperature in a similar manner as the width of the A_2^g mode. However, because the phonon properties of black phosphorus are still not fully understood, the explanation of this observation needs deeper theoretical insight, which is beyond the scope of this work.

Figure 4. Temperature dependence of (a) black phosphorus A_2^g Raman mode width (solid line represents fit to eq 3) and (b) Raman mode intensity ratio normalized to the A_1^g mode intensity. A_2^g mode width exhibits nonlinear temperature dependence, that is, remains almost constant at low temperatures, and then increases with the temperature above approximately 150 K. The broadening of the Raman mode width, as in the case of the Raman mode position softening, is related to the decay of optical phonon into acoustic phonons and can be described by using the modified approach developed by Balkanski et al.37,40
properties of black phosphorus or the thermal metrology based on Raman spectroscopy3,42,43 of BP-based devices, which are still under development.

ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.6b01468.

Details of error calculation; additional figures of AFM images (S1) and temperature dependence of Raman modes position (S2) of ~9.5 nm thick black phosphorus flake; parameters of fit to eqs 1 and 2 from main manuscript to experimental data (Tables S1 and S2) (PDF)

AUTHOR INFORMATION

Corresponding Author

*(M.Z.) E-mail: zdrojek@if.pw.edu.pl.

Present Address

* A.T. is also with the Institute of Electron Technology, Warsaw, Poland, and the Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Warsaw, Poland.

Author Contributions

* A.L. and A.T. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The work was supported by the Polish Ministry of Science and Higher Education within the Diamond Grant program (0025/DIA/2013/42). A.L. and J.J. thank the Polish National Science Centre for support within Project 2014/15/D/ST5/03944.

REFERENCES

