Comparison of the structural and corrosion properties of the graphene/ SiN(200) coating system deposited on titanium alloy surfaces covered with SiN transition layers

M. Kalisz a,⁎, M. Grobelny a, M. Świniarski b, P. Firek c

a Motor Transport Institute, Centre for Material Testing, 80 Jagiellonska St, Warsaw, Poland
b Faculty of Physics, Warsaw University of Technology, 75 Koszykowa St, Warsaw, Poland
c Faculty of Electronics and Information Technology, Warsaw University of Technology, 75 Koszykowa St, Warsaw, Poland

A R T I C L E I N F O
Article history:
Received 24 February 2016
Revised 25 April 2016
Accepted in revised form 27 April 2016
Available online 28 April 2016

A B S T R A C T
In this paper, comparative studies of the structural and corrosion properties of SiN/graphene/SiN coating systems with various SiN transition layer thickness have been investigated. The coating systems were formed on Ti6Al4V alloy surfaces. The SiN transition layer thicknesses varied from 100 nm to 300 nm. The thickness of the upper silicon nitride thin film, in all examined cases, was 200 nm. The silicon nitride thin film was deposited using the Plasma Enhanced Chemical Vapour Deposition method. A graphene monolayer was transferred onto the silicon nitride surface using the “PMMA-mediated” method.

The structural characteristics of coating systems obtained were examined using Raman spectroscopy, optical profilometry and SEM measurements. The corrosion properties of the coating systems were determined by an analysis of the voltammetric curves.

The SiN/graphene/SiN coating system with a 300 nm thick silicon nitride transition layer is characterised by the best structural and corrosion properties of all tested coating systems. In this case, the surface of the top silicon nitride thin film has no holes or flakes, as opposed to the coating systems with 100 nm and 200 nm thick transition layers, in which the upper SiN thin film flaked and dropped off. The value of corrosion current density obtained for this sample was almost two orders of magnitude lower than the current density obtained for the other tested coating systems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction
Titanium alloys have many potential industrial applications, mainly owing to their good mechanical and corrosion properties and biocompatibility [1–3]. However, some of these applications are limited because of certain unsatisfactory surface parameters, i.e. low hardness, low wear resistance and low corrosion resistance in hot, concentrated and low – pH solutions [4–7]. To bypass these obstacles, many various surface treatment techniques are used. These methods include, burnishing and surface micro-shot peening and thermo-chemical treatment, in particular based on the PVD and CVD methods [8–11]. Another way to protect titanium alloys and improve their surface properties is the application of ceramic coatings, i.e. silicon nitride. Silicon nitride thick films can be described as materials with high density, low wear rates, good insulating properties, excellent Na⁺ resistance, relatively high fracture toughness, strength, high temperature corrosion resistance in an oxidizing atmosphere and in a sulphidizing-oxidizing atmosphere [12] and excellent biocompatibility [13–15]. They are an excellent diffusion barrier against water and aggressive contaminants that can corrode titanium alloys [16]. Silicon nitride films can be deposited by low-pressure-chemical-vapour-deposition (LPCVD), plasma enhanced chemical vapour deposition (PECVD) and reactive radio frequency (r.f.) sputtering techniques, but their structural, mechanical and corrosion properties highly depend on the technological process used [17–19].

Graphene has already proven to be an alternative way to improve the surface properties of titanium alloys, especially corrosion resistance. Recent studies have shown that a single graphene layer considerably increases the corrosion resistance of materials such as copper [20], nickel [21] and titanium alloy [22] and protects the surface of those metals from oxidation [22]. Unfortunately, a single layer of graphene does not change the mechanical properties of the surface on which it is deposited [22].

Previous research has shown that a combination of two types of coatings, such as silicon nitride and graphene monolayer, in a hybrid coating system, having a thickness of several hundred nanometres, is
characterised by good mechanical properties and excellent corrosion resistance in aggressive environments, e.g. body fluids [23,24].

Unfortunately, this hybrid coating system also has a few disadvantages. As shown in recent studies, the graphene monolayer introduced at the structure interface, between the titanium alloy substrate and the silicon nitride coating system in graphene/SiN coating systems, reduces the adhesion of the silicon nitride thin film to the titanium substrate. The silicon nitride thin film breaks and comes away from the surface during the process of creating the hybrid system [23], significantly reducing its corrosion resistance.

The purpose of this manuscript is to show the effect of the silicon nitride transition layer, incorporated between the titanium alloy surface and the graphene/SiN(200) coating system on the structural and corrosion properties of the whole coating system. In this work, the structural and corrosion properties of the graphene/silicon nitride(200) coating system deposited on titanium alloy surfaces covered by the silicon nitride transition layer with three different thickness, has been investigated and compared with the pure titanium alloy and Ti-Al-V/SiN systems.

2. Materials and methods

2.1. Experimental design

2.1.1. Specimen preparation

For the purpose of the experiment, five sets of titanium alloy Ti6Al4V (ASTM Grade 5, UNS R56400) (Table 1) were prepared in the same manner. Before the technological processes, the Ti alloy surfaces were polished using Stuers RotoPol 21 grinding and polishing apparatus. The sample surface was polished to a “mirror finish”. In the next stage, samples were cleaned in an acetone solution.

Hydrochloric acid solution, hydrogen peroxide as a catalyst dissolved in DI (deionized) water. Next, the ion particles were removed using a reactive ion etching method in oxygen plasma (PlasmaLab 80+, Oxford Instruments). After that, the exposed Cu foil was dissolved in an aqueous etchant of iron (III) nitrate for several hours. When the copper dissolved the graphene sample was cleaned in DI (deionized) water. Next, the ion particles were removed using a hydrochloric acid solution, hydrogen peroxide as a catalyst dissolved in water [24]. After all the cleaning steps the PMMA/graphene layer was transferred to the examined surfaces and annealed in order to evaporate the water and increase the adhesion between the graphene and the surface. In the last step the PMMA layer was removed.

2.1.4. Preparation of test samples

In the Fig. 1 the schematic procedures for the preparation of the test samples are shown.

One set of 500 nm thick silicon nitride film and three sets of silicon nitride transition layers with different thickness (100 nm, 200 nm and 300 nm) were prepared. In the case of samples with silicon nitride transition layers, their surface was covered with a graphene monolayer. At the end, these same samples were covered with 200 nm thick silicon nitride thin films. In this way, four different coatings systems were prepared. These coatings systems were labelled: SiN(500), SiN(100)/graphene/SiN(200), SiN(200)/graphene/SiN(200) and SiN(300)/graphene/SiN(200).

The sample covered with a 500 nm thick silicon nitride thin film was prepared in two processes with a pause to expose the sample to the atmosphere, similar to the sample covered with the SiN(300)/graphene/SiN(200) coating system. The aim of this procedure was to minimize the effect of the preparation of the samples on their structural and corrosion properties.

During the preparation of the silicon nitride thin films, the SiH4 and NH3 flow rates, r.f. power, temperature as well as the pressure in the chamber, were kept constant at 150 ml/min, 50 ml/min, 120 W, 350 °C and 0.8 Torr, respectively. The thickness of the deposited layers was controlled by the time of the deposition process, which varied from 1 min to 3 min.

<table>
<thead>
<tr>
<th>Component</th>
<th>C</th>
<th>Fe</th>
<th>N</th>
<th>O</th>
<th>Al</th>
<th>V</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt.%</td>
<td>0.08</td>
<td>0.25</td>
<td>0.05</td>
<td>0.20</td>
<td>5.50–6.75</td>
<td>3.5–4.5</td>
<td>Bal</td>
</tr>
</tbody>
</table>

2.1.2. Preparation of the silicon nitride thin films

The amorphous silicon nitrides thin films were fabricated using the Oxford Plasma Technology PlasmaLab 80 Plus System, which is a parallel plate PECVD (13.56 MHz) deposition system. The system makes it possible to predefine the process parameter values and control them in real-time during the process. The films prepared using the PECVD method have a lot of advantages, such as low deposition temperature, high growth rate, good uniformity and good adhesion to the substrate surface [25].

2.1.3. Graphene monolayer preparation

The graphene monolayers were grown on 18-μm thick copper foil using the chemical vapour deposition (CVD) technique. For this purpose a home-made CVD set – based on a Blue M Tube Furnace with a 1-in. diameter reactor tube – was used. During the growth process the reactor chamber is set to a low pressure (~10⁻⁶ Torr) and heated up to ~1000 °C in hydrogen atmosphere. Methane is used as a carbon source (growth time is typically 10 min).

Graphene was transferred to the titanium alloy surfaces and the silicon nitride surfaces using the “PMMA-mediated” method [26]. First, the PMMA (495 K, about 100 nm thick) was spin-coated on top of the synthesised graphene on a copper substrate and dried for 24 h at room temperature. Next the graphene from the bottom of the Cu substrate was etched using a reactive ion etching method in oxygen plasma (PlasmaLab 80+, Oxford Instruments). After that, the exposed Cu foil was dissolved in an aqueous etchant of iron (III) nitrate for several hours. When the copper dissolved the graphene sample was cleaned in DI (deionized) water. Next, the ion particles were removed using a hydrochloric acid solution, hydrogen peroxide as a catalyst dissolved in water [26]. After all the cleaning steps the PMMA/graphene layer was transferred to the examined surfaces and annealed in order to evaporate the water and increase the adhesion between the graphene and the surface. In the last step the PMMA layer was removed.

Fig. 1. Schematics showing the preparation of the test samples.
Table 2 shows a summary of the parameters used for the deposition of the SiN thin films in this study.

Electrochemical measurements

The electrochemical measurements were carried out in 0.5 M NaCl, 2 g/l KF, pH = 2 aerated solutions at room temperature. The values of the corrosion current densities (i_{corr}) were obtained from the polarization curves by the extrapolation of the cathodic and anodic branch of the polarization curves to the corrosion potential [31].

Results and discussion

3.1. Structural characterisation of the TiAlV/SiN/graphene/SiN/graphene coating systems

In Fig. 2 an exemplary SEM image is shown of a silicon alloy surface covered by silicon nitride thin films, corresponding to all measured samples. The surfaces of all measured samples are smooth, without cracks or damage.

In Fig. 3 an exemplary SEM image is shown of the graphene monolayer deposited on a silicon nitride transitions layer. This image is appropriate for each of the prepared samples. The sample surfaces remain smooth, without cracks or damage and with visible grains of the graphene layer.

In the Raman spectra for the graphene layers deposited on the respective silicon nitride transition layers, the negligible D mode is seen, suggesting that the graphene layer in each prepared sample is without structural defects. Furthermore the intensity ratio of the G and 2D modes shows that the deposited graphene layer, on each investigated sample, is indeed a graphene monolayer. In Fig. 4 an example Raman spectrum is shown, appropriate for each of the prepared samples.

In Fig. 5 SEM images are shown of silicon nitride thin films deposited on top of prepared coating structures. As the obtained results show, the structural properties of the deposited silicon nitride thin film depend on the thickness of the transition layer.

For the SiN(100)/graphene/SiN(200) and SiN(200)/graphene/SiN(200) samples we found some areas where the SiN layer peeled away from the graphene surface forming holes in the upper SiN layer. The results obtained suggest low silicon nitride adhesion to the thin carbon layer. However, depending on the thickness of the silicon nitride transition layer, the size of the holes formed in the layer changes. The thicker the transition layer, the less damage to the upper SiN layer is observed (compare Fig. 5a and 5b).

For the SiN(300)/graphene/SiN(200) coating system, in the surface of upper silicon nitride thin film, no cracks, deformation or defects were observed. The surface of the top silicon nitride thin film is without holes or flakes (see Fig. 5c).

For comparison, in Fig. 6 the SEM image of the silicon nitride thin film deposited on the titanium alloy surface covered a graphene monolayer, without a transition layer, is shown. In this image we found many areas where the SiN layer peeled away from the graphene surface.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Summary of the SiN process parameters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_{SiN} [nm]</td>
<td>100</td>
</tr>
<tr>
<td>RF Power [W]</td>
<td>120</td>
</tr>
<tr>
<td>Pressure [Torr]</td>
<td>0.8</td>
</tr>
<tr>
<td>SiH$_4$ gas flow [ml/min]</td>
<td>150</td>
</tr>
<tr>
<td>NH$_3$ gas flow [ml/min]</td>
<td>50</td>
</tr>
<tr>
<td>Temperature [°C]</td>
<td>350</td>
</tr>
<tr>
<td>Time [min]</td>
<td>10</td>
</tr>
</tbody>
</table>
forming holes in the SiN layer, which suggests low silicon nitride adhesion to the thin carbon layer [23,24].

The Raman spectra collected in peeled off areas, in samples of SiN(100)/graphene/SiN(200) and SiN(200)/graphene/SiN(200), show the existence of amorphous carbon (Fig. 7) [32]. Our previous research shows that the SiN deposition process seems to strongly deteriorate the quality of deposited graphene [23,24].

The Raman spectra collected in the SiN(300)/graphene/SiN(200) sample, showing the existence of an SiN thin film only (no evidence of carbon) (see Fig. 8). This might be caused by the fact that the SiN(200) layer deposited on top of the graphene layer is too thick and completely screens the Raman carbon signal from the underlying graphene layer, especially if this is an amorphous carbon layer, which usually has a lower intensity than graphene [23,24].

As the obtained results show, the best structural properties were obtained for the SiN(300)/graphene/SiN(200) sample with the 300 nm thick silicon nitride transition layer incorporated at the structure interface, between the titanium alloy surface and the graphene/SiN(200) coating system.

3.2. Potentiodynamic tests

Fig. 9a and 9b show the course of the open circuit potential (OCP) and the course of the polarization curves of all tested samples in a 0.5 M/l NaCl, 2 g/l KF, pH = 2 electrolyte solution. The results of the measurements of the electrochemical parameters of the samples obtained from the polarization curves are shown in Table 3.

The results obtained have shown that all studied SiN/graphene/SiN coating systems are highly resistant to corrosion in very aggressive environments, which is expressed by a decrease of the corrosion current density i_{corr} and a shift of the corrosion potential E_{corr} values to the noble potentials.

For the samples with the SiN(100)/graphene/SiN(200) and SiN(200)/graphene/SiN(200) coating systems, the corrosion current density values obtained are very similar and equal $1.08 \cdot 10^{-8}$ [A/cm²] and $2.11 \cdot 10^{-8}$ [A/cm²], respectively. The values obtained are similar to those obtained for thicker SiN(500) coating systems without a graphene monolayer. This is confirmation of our previous research into the impact of graphene monolayers on the corrosion properties of thin films deposited on titanium alloy surfaces [22-24].
From the all tested samples, the lowest corrosion current density and therefore the best corrosion properties were obtained for the SiN(300)/graphene/SiN(200) coating system. The value of the corrosion current density obtained for the SiN(300)/graphene/SiN(200) coating system was 1.11×10^{-10} [A/cm2]. This value is almost two orders of magnitude lower than the value of the corrosion current density obtained for the SiN(100)/graphene/SiN(200), SiN(200)/graphene/SiN(200) and SiN(500) coating systems.

Furthermore, the course of the voltammetric curves for titanium alloy and titanium alloy with a SiN coating (Fig. 9a) indicates the passivation of the sample surface, probably the passivation of metallic titanium. At potentials of about -0.5 V a decrease in current density occurs. This phenomenon does not occur with the other samples, i.e. titanium alloy with SiN–graphene coatings.

It should also be noted that SiN–graphene coatings have high durability, even during exposure in aggressive electrolyte. For these samples the courses of the corrosion potentials were very stable. During one hour’s exposure the potential changed by only about 60 mV. For the uncoated titanium alloy sample, after about 500 s a sharp decline in the value of the potential from -0.3 V to -1.0 V takes place (see Fig. 9a). This change is caused by damage to the oxide layer present on the surface of the titanium alloy. The oxide layer acts as a barrier and protects against general corrosion processes. However, in the acidic pH (pH approx. 2) environment, the protective layer is unstable and the corrosion processes typical for metallic Ti and its alloys are initiated. This phenomenon is accelerated in the presence of aggressive ions such as fluoride ions [33–36]. A similar OCP course was observed for titanium alloy covered by the SiN(500) thin film (see Fig. 9a). In this case after about 2040s a sharp decline in the value of the potential, from -0.4 V to -0.8 V, takes place. This is probably due to the penetration of the coating by the electrolyte and the beginning of the corrosive titanium alloy reaction.
The SiN(100)/graphene/SiN(200) coating system is characterised by the best corrosion properties from among all the tested coating systems.

4. Summary

We have shown that a SiN transition layer incorporated at the structure interface, between the titanium alloy surface and the graphene/SiN(200) coating system, significantly changes its structural and corrosion properties. The structural properties of the graphene/SiN coating system depend on the thickness of the transition layer, and the thicker the transition layer, the better they are. With the 300 nm thick SiN transition layer at the structure interface, the upper silicon nitride thin film from the graphene/SiN coating system has no holes or flakes. The whole coating system is characterised by very good structural parameters and excellent corrosion resistance. Such prepared coating structure protects the titanium alloy surface against the corrosion processes that take place on pure titanium alloy surfaces in very aggressive environments.

In the next step, investigations will be performed to assess the durability of the corrosion and mechanical properties of the multilayer hybrid system (SiN/graphene) during temporary exposure in corrosive environments (artificial saliva, SBF etc.). They will involve electrochemical impedance measurements to complete the study of the corrosion properties of multilayer hybrid systems.

Acknowledgments

This work was financed by the National Centre for Research and Development in 2013–2016 as research project No. GRAF-TECH/NCBR/14-26/2013 “InGrafTi”.

References