Temperature-Dependent Thermal Properties of Supported MoS$_2$ Monolayers

Andrzej Taube,† Jarosław Judek, Anna Łapińska, and Mariusz Zdrojek*

Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland

Supporting Information

ABSTRACT: Thermal properties can substantially affect the operation of various electronics and optoelectronics devices based on two-dimensional materials. In this work, we describe our investigation of temperature-dependent thermal conductivity and interfacial thermal conductance of molybdenum disulfide monolayers supported on SiO$_2$/Si substrates, using Raman spectroscopy. We observed that the calculated thermal conductivity (κ) and interfacial thermal conductance (g) decreased with increasing temperature from 62.2 W m$^{-1}$ K$^{-1}$ and 1.94 MW m$^{-2}$ K$^{-1}$ at 300 K to 7.45 W m$^{-1}$ K$^{-1}$ and 1.25 MW m$^{-2}$ K$^{-1}$ at 450 K, respectively.

KEYWORDS: molybdenum disulfide, MoS$_2$ monolayer, two-dimensional atomic crystals, Raman spectroscopy, thermal conductivity, thermal properties

The family of transition metal dichalcogenides (TMDCs) consists of a number of compounds with the general formula MX_2, where M is a metal atom (e.g., W, Mo, Hf) and X is an atom of tellurium (Te), sulfur (S) or selenium (Se). Isolated monolayers of transition metal dichalcogenides belong to a novel class of materials, two-dimensional atomic crystals, which have gained much attention because of their unique electronic, optical and mechanical properties. The most widely studied member of TMDC-based two-dimensional atomic crystals is molybdenum disulfide (MoS$_2$) monolayer, a semiconductor with a direct band gap of 1.85 eV. Contrary to graphene, which is a semimetal with zero band gap, MoS$_2$ enables construction of a variety of electronic and optoelectronic devices, such as photodetectors, transistors and even integrated circuits. For the operation and design of these devices, especially with constantly decreasing dimensions and increasing density of modern ultralarge-scale integrated circuits, knowledge of the thermal properties of the materials, such as thermal conductivity and interfacial thermal conductance, is essential. The thermal properties of MoS$_2$ are not yet fully understood, and there have been only a few theoretical and experimental studies of molybdenum disulfide thermal conductivity. However, in those reports, the temperature dependence of the thermal properties was not investigated and the studies were not strictly devoted to supported MoS$_2$ monolayers, i.e., the configuration most commonly used in real devices.

The state-of-the-art method for nondestructive and reliable characterization of thermal properties of nanomaterials is currently an optothermal method based on Raman spectroscopy, which is also used to determine the number of layers in two-dimensional atomic crystals. For example, the thermal conductivity of graphene was measured for the first time using this method. In this work, we report an experimental investigation of the thermal properties of MoS$_2$ single layers supported on SiO$_2$/Si substrates. Importantly, the temperature dependence of the thermal conductivity and interfacial thermal conductance values were determined, providing a valuable contribution to the understanding of the properties of two-dimensional atomic crystals. Our results may also be helpful in the design of MoS$_2$ electronic and optical devices.

The thermal conductivity (κ), interfacial thermal conductance per unit area (g), and temperature dependence were extracted from Raman spectroscopy measurements (scheme of experimental setup is shown in Figure 1a) using the approach developed by Cai et al. In this model, the temperature distribution in the MoS$_2$ monolayer is obtained from the heat diffusion equation in cylindrical coordinates in the following form

$$1 \frac{d}{r} \left(r \frac{dT}{dr} \right) - \frac{g}{\kappa T} (T - T_e) + \frac{Q}{\kappa} = 0$$

where g is the interfacial thermal conductance per unit area, κ is the thermal conductivity of supported MoS$_2$ monolayers, and t is the MoS$_2$ monolayer thickness. The volumetric optical heating, Q, is expressed by eq 2, assuming a Gaussian beam profile

$$Q = \frac{q_0}{t} e^{-r^2/r_0^2}$$

Received: January 23, 2015
Accepted: February 23, 2015
Published: February 23, 2015

DOI: 10.1021/acsami.5b00690

ACS Appl. Mater. Interfaces 2015, 7, 5061−5065
In the above equation, \(q_0 \) is the peak of absorbed laser power per unit area at the center of the beam spot. We note that this model assumes diffusive phonon transport. For the MoS\(_2\) monolayer, the phonon mean free path is on the order of a few to tens of nanometers\(^{10,11} \), much less than the utilized laser beam size, which validates the above assumption in our case.

The temperature rise due to optical power heating is defined as \(\theta = T - T_a \), where \(T_a \) is the global temperature and \(T \) is the temperature in MoS\(_2\) upon laser heating. Using the solution of eq 1, the temperature rise induced by laser beam irradiation measured by Raman spectroscopy method is expressed as follows\(^5\):

\[
\theta_\text{m}(\kappa, g, r_0) = \frac{\int_0^\infty \theta(r)e^{-(r_0/r_0)^2}rdr}{\int_0^\infty e^{-(r_0/r_0)^2}rdr}
\]

(3)

However, instead of using eq 3 for calculating \(\kappa \) and \(g \), the quantity \((\partial \theta_\text{m}/\partial P_a) \) (\(P_a \) is total absorbed laser power) is used, which can be experimentally obtained using the following relation

\[
\frac{\partial \theta_\text{m}}{\partial P_a} = \frac{\partial \omega}{\partial P_a} \frac{\partial \theta_\text{m}}{\partial \omega} = \frac{\partial \omega}{\partial P_a} \left(\frac{\partial \theta_\text{m}}{\partial \omega} \right)^{-1}
\]

(4)

The use of \((\partial \theta_\text{m}/\partial P_a) \) instead of \(\theta_\text{m} \) for the determination of \(g \) and \(\kappa \) is to avoid artificial shifts of peak position resulting from calibration errors for two different objectives. The solution of eq 4 depends on 2 parameters: \(\kappa \) and \(g \). The values of thermal conductivity and interfacial thermal conductance can be determined by solving a system of two eqs 4 for two \((\partial \theta_\text{m}/\partial P_a) \) obtained from the Raman measurements with two objectives with different numerical apertures values i.e., for two different \(r_0 \) values.

MoS\(_2\) flakes were deposited by the conventional mechanical exfoliation method\(^2 \) on SiO\(_2\) (275 nm)/Si substrates. Optical microscopy, atomic force microscopy (AFM) and Raman spectroscopy were used to locate and identify the monolayers. Figure 1b shows an AFM image of an exemplary, isolated single layer flake, whose thickness was approximately 0.7 nm, typical for a MoS\(_2\) monolayer on a SiO\(_2\) substrate.\(^8 \) Temperature-dependent Raman scattering studies were conducted using an Ar laser with a 514 nm (2.41 eV) excitation wavelength. The spectra were collected in the temperature range of 300 to 450 K using 50\(\times \) (NA=0.5) and 100\(\times \) (NA=0.85) objectives in ambient atmosphere. For each temperature and objective, measurements were performed at two incident laser radiation powers, 0.17 mW and 1.7 mW, which were calibrated on the sample. The Raman spectra of the MoS\(_2\) monolayers and their corresponding Lorentzian fits taken at 300 and 450 K with low incident laser power (0.17 mW) are shown in Figure 1c. The Raman spectra of the MoS\(_2\) monolayers taken with \(\lambda_{\text{ex}} = 514 \) nm shows two main modes, E\(_{1}^{2g}\) and A\(_{1g}\). The E\(_{1}^{2g}\) mode is associated with in-plane vibration of the sulfur and molybdenum atoms, whereas the A\(_{1g}\) mode is related to out-of-plane vibration of sulfur atoms. At 300 K, the positions of the E\(_{1}^{2g}\) and A\(_{1g}\) modes were 386.4 cm\(^{-1}\) and 404.6 cm\(^{-1}\), respectively. The difference between the positions of the two main Raman modes, which is typically used for determination of the number of MoS\(_2\) layers, was 18.2 cm\(^{-1}\), i.e., the value of monolayer MoS\(_2\).\(^{17} \) The position of the Raman peaks of MoS\(_2\) monolayers is red-shifted with increasing temperature, as seen in Figure 1c, and thus it can be used as a temperature indicator. For the spectra measured at 450 K, the positions of E\(_{1}^{2g}\) and A\(_{1g}\) were 385.4 and 403.2 cm\(^{-1}\), respectively.
determined from the Lorentzian fit. The full temperature dependence of the A1g mode position measured between 300 and 450 K is depicted in Figure 1d. The position of the A1g mode decreases with increasing global temperature for all cases and exhibits linear temperature dependence in the range used in the experiment. The experimental data were fitted to the following equation

$$\omega(T) = \omega_0 + \chi T$$

(5)

which is widely used to describe the temperature dependence of Raman modes in a wide group of materials, including MoS2 and other two-dimensional crystals.21−23 The extracted χ values were −0.0096 and −0.0097 cm$^{-1}$/K for low P_{in}. The slopes of the temperature dependence of the A1g mode obtained from the data for higher P_{in} were greater at approximately −0.01 and −0.012 cm$^{-1}$/K for 50× and 100× objectives, respectively.

The laser beam size, r_0, is experimentally obtained by measuring the intensity of the silicon peak at ∼520 cm$^{-1}$ as a function of distance (x) from the edge of the evaporated Au metallization on the SiO2/Si substrate using a procedure similar to the “knife edge” method.24 Figure 2a shows the obtained normalized intensity of the silicon Raman peak measured for two objectives used in Raman spectroscopy measurements with 100× and 50× magnification. The beam size is determined by fitting the experimental data to an error function with the following form

$$I(x) = (I_0/2) \left(1 + \text{erf}\left(\frac{x-x_0}{x_0}\right)\right)$$

(6)

where x_0 is the beam size (r_0). The determined beam sizes for 100× and 50× objectives were 0.4 and 0.72 μm, respectively. We also checked the position of the Si substrate mode during laser heating and found that absorption of laser power caused a negligible temperature rise in silicon in our case.

For each fixed global temperature (without laser heating), $(\partial \omega_{A1g}/\partial P_{abs})$ was calculated as follows. First, the $(\partial \omega_{A1g}/\partial P_{in})$ was calculated as the difference of the A1g mode position measured for two different total absorbed laser powers divided by the P_{abs} difference, followed by linear fitting of the data (Figure 2b). The total absorbed laser power for the MoS2 monolayer used in eq 2 was calculated as P_{in} times the absorbance level at the applied incident photon energy. The absorbance (α) level at 2.41 eV ($\lambda = 514$ nm) experimentally determined for monolayer MoS2 varies between 4% and 9%25−27 but was taken as 7% in our calculation. Then, we extrapolated the fitted data, i.e., the position of the A1g mode for $P_{abs} = 0$. On the basis of this method, the temperature dependence of A1g was obtained, and the temperature dependence coefficient, $\chi = (\partial \omega_{A1g}/\partial T)$, for $P_{abs} = 0$ was extracted. Finally, $(\partial \omega_{A1g}/\partial P_{abs})$ and the temperature rise upon laser heating, $\Delta T_{\text{Raman}} = \theta_{in} - T_{\theta}$, were calculated on the basis of eq 4.

The temperature dependence of $(\partial \omega_{A1g}/\partial P_{abs})$ and ΔT_{Raman} is presented in Figure 2c, d. First of all, both the measured thermal resistance and the temperature rise induced by laser heating were greater at 100× objective than at 50×. In both cases, $(\partial \omega_{A1g}/\partial P_{abs})$ and ΔT_{Raman} increased linearly with increasing global temperature. Note that the temperature rise determined by Raman spectroscopy at 100x increases more rapidly with global temperature than at 50×. For example, ΔT_{Raman} extracted at 300 K and an incident laser power of 1.7 mW for the 100× objective was 49.3 K, whereas it was 17.6 K for the 50× objective. At 450 K, ΔT_{Raman} was determined to be 89.6 and 29.1 K for 100× and 50× objectives, respectively. These results can be explained by the different power densities focused on the surface of the monolayer flake (see Figures S1 and S2 in the Supporting Information).

The calculated thermal conductivity and interfacial thermal conductance values of MoS2 supported on a SiO2/Si substrate for different global temperatures are depicted in Figure 3. Similar to graphene, the thermal conductivity of the MoS2 monolayer decreased with increasing temperature.14 The trend of decreased thermal conductivity with increasing temperature...
The thermal conductivity of the supported MoS2 monolayer was almost 28% change in the value of the reported so far. For instance, the change of the in under vacuum, in contrast to our measurements, which were at the interface between MoS2 monolayer and the substrate my based devices.

Nonetheless, as we mention in the introduction, there have been only a few reports regarding the thermal conductivity of MoS2 and other transition metal dichalcogenides mono and multilayers; thus, further work is still required to fully understand their thermal properties.

ASSOCIATED CONTENT

Supporting Information
Supporting calculations of temperature distribution profiles under laser heating. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
Andrzej Taube is also with Institute of Electron Technology, Warsaw, Poland and with Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Warsaw, Poland.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Polish Ministry of Science and Higher Education within the Diamond Grant programme (0025/DIA/2013/42).

REFERENCES

Figure 3. Calculated temperature dependence of (a) the thermal conductivity and (b) interfacial thermal conductance per unit area of supported MoS2 monolayers. The shaded areas correspond to the minimum and the maximum of the absorbance values of MoS2 monolayers reported so far.53–27

