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Abstract: The future applications of hyperbolic metamaterials demand stacks of materials with 
alternative ultra-thin conductive/dielectric films with good homogeneity of the thickness and 
reduced roughness level. In this work, the technology of pulsed-DC magnetron sputtering of 
aluminum was optimized using the Taguchi method in order to fabricate Al films with improved 
roughness level. The performed structural characterization proved the smaller Al domains and 
better homogeneity of the surface. The optimized process was used to fabricate a multilayer 
structure of Al/HfOx as the metamaterial media. The fabricated structures were optically 
characterized in the UV/VIS range. The presented findings demonstrated the tunability effect of the 
effective reflectance of the examined stacks. The presented results are promising for the future 
application of multilayer structures in novel photonic devices based on hyperbolic metamaterials.  

Keywords: aluminum (Al); Magnetron Sputtering; Taguchi orthogonal tables, Scanning Electron 
Microscopy (SEM); Atomic Force Microscopy (AFM) 

 

1. Introduction 

Conductive materials fabricated from aluminum films are commonly used in current 
semiconductor technologies in the form of connections or inter-metal dielectric layers [1,2]. 
Aluminum films also find numerous applications in optoelectronics and photovoltaics as anti- or 
reflective coatings and lateral current collective materials [3,4]. While inhomogeneities of thickness 
are of little importance in these applications, the modern technologies of nanoelectronic and photonic 
devices demand the fabrication of conductive films in the thin, and ultra-thin regime (up to 20 nm). 
The roughness of such films is becoming increasingly important, as it influences the optical properties 
and integrity of multi-layer structures which are the basis for the fabrication of novel nano-
engineered media known as metamaterials, i.e., materials with a negative refractive index called left-
handed [5,6]. 

These kinds of materials offer unique electromagnetic responses that can be obtained neither in 
conventional media nor in nature. The specific class of metamaterials, which became particularly 
important at THz, as well as mid-infrared (MIR), near-infrared (NIR), and optical frequencies, are 
hyperbolic metamaterials (HMMs) [7]. Such structures are typically composed of periodically 
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arranged metallic/dielectric sub-wavelength planar bilayers. These structures are commonly known 
in the literature as 1D-HMM since its spatial periodicity is observed in a single (1D) direction. 

The most striking feature of HMMs that comes from the hyperboloidal shape of their iso-
frequency contour in the k-wavevector space is the existence of unique states with large magnitude 
wavevectors (the high-k states), which decay exponentially in conventional media [8]. This feature 
gives rise to many device applications ranging from imaging to quantum nanophotonics [9], 
obtaining broadband Purcell effect [10] or controlling spontaneous emission rate of emitters [11,12]. 
Moreover, HMM-based waveguides offer unusual properties including the absence of fundamental 
modes, double degeneracy of the modes, the sign-varying energy flux [13], as well as slowing down 
the speed of light, enabling possible applications as optical buffers and delay lines in integrated 
optical circuits [14]. Recent studies have shown the possibility of tuning their optical properties in 
THz, infrared, and optical frequency ranges by applying an external electric field [15–17]. 

This study presents optimization results of thickness inhomogeneity of aluminum films 
fabricated through pulsed-DC magnetron sputtering process for the application in multilayer 
structures that are the basis for the hyperbolic metamaterials. In this work, the experimental runs 
were designed according to the Design of Experiments (DoE) method, namely Taguchi orthogonal 
tables [18]. DoE is a methodology for systematically applying statistics to experimentation [19]. It can 
be also defined as a series of tests in which purposeful changes are made to the input variables of a 
process or system so that the reasons for these changes in the output response may be observed and 
identified [20]. Numerous case studies in different areas of application prove the advantages and 
potential of DoE methods, such as Block Designs, Two-Level/General/Fractional Factorial 
Experiments, Response Surface Methodology, or Evolutionary Algorithms [21–23]. However, the use 
of orthogonal tables employing the Taguchi approach is easy to implement and quite effective, allows 
for a large saving in an experimental effort, and is simple to analyze. Therefore, orthogonal tables 
have already found number of implementations in environmental [24], and agricultural sciences [25], 
physics [26], chemistry [27], statistics [28], management and business [29], or medicine [30]. 

The DoE method used in this study allowed for the investigations of dependencies between 
variables of process’ parameters, i.e., magnetron sputtering, and output parameters, i.e., the 
properties of the examined material [31]. Within this work, the effective optimization of the 
homogeneity of aluminum films was performed. As a consequence of the optimization process, the 
set of variables of the magnetron sputtering process was designed resulting in the Al film with the 
controllable thickness and smooth surface. This finding allowed for the successful fabrication of 
multilayer structures based on Al and hafnium oxide (HfOx) ultra-thin films. Finally, we present the 
preliminary experimental results of the tunability of Al/HfOx stacks that might have found the 
practical application in photonic structures based on HMMs [32–34]. 

2. Materials and Methods 

In this study, aluminum and hafnium oxide films were fabricated using a pulsed-DC magnetron 
sputtering method using a PlasmaLab System 400 made by Oxford Instruments Plasma Technology 
(Yatton, Bristol, UK). All processing steps were performed at room temperature using the 8-inch Al 
and Hf targets with 99.999% purity level. While the aluminum films were deposited in argon (Ar) 
atmosphere, the hafnium oxide films were formed in reactive mode with argon and oxygen-based 
plasma. The substrates were positioned on-axis of the sputtering beam and the target-to-substrate 
distance was of the order of 20 cm. Before the fabrication of conductive and dielectric films, Si 
substrates were cleaned by means of modified Radio Corporation of America (RCA) method (piranha 
+ SC1 + SC2 + BHF dipping). A three-stage optimization procedure was performed to achieve 
satisfying results and a significant decrease in the roughness of investigated Al films. During the 
optimization, all processing steps of the fabrication of Al films were conducted on silicon substrates, 
as they are characterized by a perfect smoothness level. Thus, during the optimization procedure, all 
inhomogeneities of the aluminum thickness appeared after the fabrication of conductive film and 
must originate from the deposition process conditions. 
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The first stage was aimed to investigate the influence of sputtering process’ parameters on the 
kinetics growth and roughness of aluminum films. The set of input (process’) parameters was 
designed using L9(43) and L25(45) orthogonal tables. These orthogonal tables assume the investigation 
of the influence of four process parameters, each with three or five variables, respectively, onto the 
output properties. The number of processing steps was 9 and 25, respectively. The aim of the use of 
the L25(45) table was to compare the obtained trends between two different designs of the 
experimental runs and to prove the correctness of the obtained trends with the use of a higher number 
of processes. The influence of pressure in the reactive chamber, power applied to the electrodes, argon 
flow, and time of the sputtering on the thickness and roughness of fabricated films were considered 
in this study. Tables 1 and 2 present the selected values of the process’ parameters for the 
optimization of aluminum thin films within both examined experimental designs. 

Table 1. Selected values of pulsed-DC reactive magnetron sputtering process’ selected for the 
optimization of aluminum films using L9(43) orthogonal table. 

Pressure 
(mTorr) 

DC Power 
(W) 

Ar Flow 
(sccm) 

Time 
(s) 

5 75 15 60 
10 100 20 120 
15 125 25 300 

Table 2. Selected values of pulsed-DC reactive magnetron sputtering process’ selected for the 
optimization of aluminum films using L25(45) orthogonal table. 

Pressure 
(mTorr) 

DC Power 
(W) 

Ar Flow 
(sccm) 

Time 
(s) 

3 
5 

50 
75 

10 
15 

10 
60 

10 100 20 90 
15 
20 

150 
200 

25 
30 

120 
180 

The obtained results allowed for the selection of the most promising parameters to obtain the 
conductive layer with tailored properties, i.e., a good homogeneity of the surface and controllable 
thickness. Thus, in the second stage of the experimental part, the verification of the optimization 
procedure was carried out and the two sets of sputtering parameters were designed in order to form 
a conductive material, i.e., (1) with the possible best, and (2) the worst roughness level. This 
procedure was aimed to show that the optimization using the Taguchi approach was performed 
successfully and the fabrication of conductive film is controllable. 

In the third stage, the multilayer structures were fabricated using the optimized process of Al 
sputtering. The fabricated stacks were composed of alternating layers of hafnium oxide and 
aluminum films. In the end, the optical properties of obtained films were examined and the 
possibility to tune the optical properties of examined stacks was demonstrated. 

The thickness and structural properties of investigated Al films were characterized using 
spectroscopic ellipsometry (city, state, country), Atomic Force Microscopy (AFM), Scanning Electron 
Microscopy (SEM), and High-Resolution Transmission Electron Microscopy (HR-TEM) . The 
thickness of investigated aluminum thin films was determined using Horiba Jobin-Yvon UVISEL 
spectroscopic ellipsometer (Glasgow, UK), in a wavelength range from 190 nm to 850 nm. The 
ellipsometry was also used to characterize the optical properties of Al/HfOx stacks. The surface 
homogeneity and morphology characterization were done using the Bruker Dimension Icon 
microscope (Coventry,  UK), in tapping mode using additionally ScanAsyst algorithm. It allows 
automatic optimization of scan parameters (e.g., gain) during scanning, which results in an ultra-low 
noise level. The apparatus ensure quantitative and qualitative atomic force measurements with a 
resolution of the order of 0.03 nm in Z-direction and 0.15 nm in X,Y-direction. The images of areas 
sized 1 μm x 1 μm or 10 μm × 10 μm were collected to evaluate the topography of examined materials 
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and calculate their roughness as root-mean-square (RMS) values. The RMS noise in the vertical 
dimension was equal to 0.03 nm. The samples for the HR-TEM examinations were prepared using a 
Focused Ion Beam (FIB) device (NB5000 Hitachi) (Mannheim, Germany), and ultimate structuring 
was performed using a Linda GenteMill low-voltage ion thinner. During FIB preparation, a thin layer 
of carbon was evaporated employing electron-gun sputtering, followed by tungsten evaporation 
using a gallium ions source. Ion milling was carried out on both sides of the samples at 0.5 kV. Then, 
the samples were analyzed using a Hitachi HD2700 HR-TEM (Mannheim, Germany). The 
investigated samples were analyzed using the bright-field STEM (BF-STEM) mode, where diffraction 
contrast is dominant, and the high-angle annular dark-field STEM (HAADF-STEM) mode, where 
mass contrast is dominant. 

3. Results and Discussion 

3.1. Investigations of the Influence of Sputtering Process’ Parameters onto the Kinetic Growth and 
Homogeneity of Aluminum Films 

It is commonly known that the typical sputtered aluminum films can be characterized by 
inhomogeneity of thickness and a high level of surface roughness [35]. The AFM and SEM 
micrographs presented in Figure 1 show topography of 30 nm Al film formed by magnetron 
sputtering. It is visible that a conductive material is characterized by a high degree of polycrystalline 
and a multi-domain structure. The estimated RMS factor is of the order of 6.2 nm. The surface 
roughness limits the fabrication of structures based on thin and ultra-thin multilayers as the 
formation of consecutive layers results in duplication and enlargement of the heterogeneity of the 
initial topography and significantly multiplies errors of the ultimate surface. 

 
(a) 

 
(b) 

Figure 1. Surface topography of 30 nm Al films sputtered using pulsed-DC magnetron sputtering 
process: (a) HR-SEM, and (b) AFM micrographs. 

 
 

Figure 2. The cross-section (HR-TEM, Z-contrast) of Al/HfOx stack fabricated on a silicon substrate 
using a pulsed-DC magnetron sputtering process. 
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The cross-section of Al/HfOx stack obtained by the TEM method is presented in Figure 2. The 
presented stack was fabricated as the example and comparison of the structure’s homogeneity and 
composition of two different materials, i.e., dielectric, and conductive one. It is worth noting the high 
level of roughness of Al film on top of very homogenous and smooth ultra-thin hafnium oxide 
dielectric film. The presented micrograph proves that it is almost impossible to determine the location 
of the interface between bulk material and a surface. 

In the first stage of optimization, to limit the roughness of Al films the influence of the input 
process’ parameters on output parameters (i.e., RMS factor of obtained conductive films) was 
analyzed. It allowed for the selection of the most promising values of sputtering to fabricate the Al 
films with the possibly low surface roughness. The influence of the sputtering’s parameters onto the 
RMS factor of conductive material is depicted in Figure 3. The results presented in Figure 3 were 
shown according to the analysis of data in the DoE method and depict the comparison of obtained 
trends from both examined experimental designs. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Influence of magnetron sputtering process’ parameters onto roughness of aluminum 
films: (a) pressure in the reactive chamber, (b) DC power applied to the electrodes, (c) argon flow, 
and (d) time of the process. 

The data presented in Figure 3 indicates that all parameters of the sputtering process have a 
reasonable effect on the roughness of aluminum films; however, the power applied to the electrodes 
is the most influential on the ultimate homogeneity of Al layer as the RMS factor changes in the range 
of 1 nm to 4 nm (Figure 3b). The time of process also has a large effect on the roughness; however, 
because the growth of the conductive material results in duplication and enlargement of the 
heterogeneity of the initial topography, and the roughness is increased with the time (Figure 3d). 
Furthermore, the shadowing of the arriving atomic flux leading to hillock growth and the increase in 
ridge height can be another reason for the deterioration of the RMS factor, as was observed in [36]. 
The pressure and the argon flow need to be taken also in the account during the design of the ultimate 
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process (Figs. 3a/c); however, the influence of those parameters has a lower impact as compared to 
DC power and time. It is also reasonable to conclude that both trends obtained using L9(43) and L25(45) 
orthogonal tables are very similar. It proves that using an orthogonal table that assumes a lower 
number of processes, i.e., L9(43), experimental efforts can be saved to get satisfying results. 

In the next stage of the performed study, the conclusions from the analysis of the obtained trends 
were used to choose and design the set of recipes with the values of parameters that allow the 
deposition of a conductive film with the controllable roughness. From the results presented in Figure 
3 it can be anticipated that the Al layer characterized by the low level of roughness should be formed 
at lower DC power values, higher pressure, and higher argon flow. Based on this assumption, two 
sets of experimental runs were designed as follows: (1) with the lowest possible roughness (i.e., 
‘optimal’ process), and (2) high level of roughness (i.e., ‘non-optimal’ process). Such a methodology 
allowed for the verification of obtained trends in the first stage of optimization. The following values 
of pressure, DC power, and Ar flow were selected for each set of parameters: (1) 20 mTorr, 50 W, 30 
sccm, and (2) 3 mTorr, 150 W, 10 sccm, in the case of ‘optimal’ and ‘non-optimal’ processes, 
respectively. In Figure 4 the comparison of the roughness level of aluminum films that were 
fabricated using both sets of process’ parameters is presented and compared to the best results from 
the 1st stage of optimization. Moreover, for the sake of comparison, the AFM micrographs of Al 
samples fabricated by the ‘non-optimal’ and ‘optimal’ process is also presented. 

As the consequence of the analysis of dependencies between process parameters and obtained 
properties of investigated films, the control of the roughness of conductive films was demonstrated. 
The presented dependencies prove that the roughness level of Al films fabricated using the ‘optimal’ 
procedure is much lower compared to both the best experimental run from the 1st stage of 
optimization, as well as the ‘non-optimal’ process that was designed intentionally to get a high level 
of roughness. The depicted AFM micrographs support the above conclusion as it is worth noting the 
reasonably smaller dimensions of Al domains after fabrication using the ‘optimal’ process as 
compared to ‘non-optimal’ recipe. The RMS factor significantly decreased from 4.8 nm to 1.7 nm for 
the ‘non-optimal’, and ‘optimal’ process, respectively. 

 
(a) 

 
 

(b) 

 
 

(c) 

Figure 4. (a) Comparison of the roughness level of aluminum films fabricated using investigated 
sputtering procedures, and AFM micrographs of Al surface after formation using (b) ‘non-optimal’ 
(RMS = 4.8 nm), and (c) ‘optimal’ (RMS = 1.7 nm) recipe; sputtering time = 300 s. 

It is believed that in the case of the ‘optimal’ process, higher pressure in the reactive chamber 
together with higher argon flow provides a higher ions density in comparison with the ‘non-optimal’ 
process. Correspondingly, with a lower power of the Ar-ions, the values of these parameters result 
in a ‘gentle’ process of ions bombardment and an efficient sputtering of the high-density of Al 
particles with smaller dimensions. As a consequence, the deposited film is characterized by smaller 
Al domains and improved roughness level. Contrary to this case, lower pressure during the ‘non-
optimal’ process results in a larger mean free path of Al particles sputtered from the target. However, 
large power applied to the electrodes provides large energy to the Ar-ions. Thus, during the target 
bombardment, Al-clusters with large dimensions may be formed. While the density of the particles 
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in the chamber is much lower due to the lower pressure, the deposited Al film is characterized by a 
higher roughness level with bigger domains of the aluminum film. 

Obtaining further improvement in the homogeneity of the fabricated films may be expected. 
However, in this case, the limitation of the sputtering equipment was reached, as the setting of the 
process’ parameters with higher pressure in the reactive chamber and the lower DC power applied 
to the electrodes results in the plasma region instabilities. As a consequence, the ‘arcing’ effect and 
lack of sputtering repeatability are observed, which disqualifies the further steps of optimization. 

As discussed above, the duration of the process strongly affects the homogeneity of the 
deposited film. Thus, to prove the correctness of the optimization, Al samples were fabricated using 
‘non-optimal’ and ‘optimal’ recipes with a thickness of 10 nm and 100 nm. The comparison of HR-
SEM micrographs of the Al film surface after sputtering using selected recipes is depicted in Figure 
5. 

The micrographs that are shown in Figure 5 confirm that the sputtering using ‘non-optimal’ 
recipe results in the conductive film with a higher crystallinity level and larger Al domains as 
compared to the ‘optimal’ process. The presented comparison also depicts that conductive film 
fabricated through the ‘optimal’ recipe with either lower, or higher thickness can be characterized by 
a better homogeneity compared to the ‘non-optimal’ film. Taking into account the results of 
optimization performed in this stage of the study, it can be concluded that the application of the DoE 
method in the form of Taguchi orthogonal tables allowed for the fabrication of ultra-thin Al films 
with an improved level of roughness as compared to the initial stage of examinations. The designed 
set of parameters of the magnetron sputtering process was used in the fabrication of structures based 
on alternative deposited dielectric and conductive ultra-thin films. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

  
Figure 5. Comparison of the surface state of aluminum films fabricated using: (a, b) ‘non-optimal’, 
and (c, d) ‘optimal’ recipe; the thickness, and RMS factor of examined films was also depicted. 

The optimization result obtained in this work is quite competitive to the roughness level 
presented in other studies related to the investigations and evaluations of aluminum thin films. As 
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an example, in the case of 100 nm-thick Al layer, the RMS of the order of ~2nm was obtained [35,36] 
which is slightly higher compared to the current study. In the other work, the superior roughness 
level of the order of 1.5 nm, and 0.9 nm for 15 nm-thick Al layer deposited at 50°C, and 100°C, 
respectively, was demonstrated. However, the formation of aluminum films was performed through 
the ion beam sputtering at high pressure (i.e., ~900 mTorr), with a very slow deposition rate (i.e., 0.1 
nm/s) that results in a very small roughness level [37]. These technological conditions are not 
available in the system used in this work; however, the reduction of the RMS factor with the increased 
level of the pressure in the reactive chamber was also proved in our study. 

3.2. Fabrication and Characterization of Structures Based on the Multilayers 

In this part of the study, the technology of multilayer structure composed of alternating hafnium 
oxide and aluminum layers was developed. The ultimate application of optimized processes was 
demonstrated in Figure 6. The fabricated multilayer structures contain 5x Al/HfOx stack. The 
thickness of each film during the formation was set at ~5 nm. 

 
(a) 

 
(b) 

  
Figure 6. Comparison of HR-TEM cross-sections of structure based on alternative (5x) Al and HfOx 
layers fabricated by pulsed-DC magnetron sputtering processes; Al film was sputtered through the 
(a) ‘non-optimal’, and (b) ‘optimal’ recipe; the thickness of each film was set at ~5 nm. 

The micrographs shown in Figure 6 indicates the improved homogeneity of the stack fabricated 
using the ‘optimal’ recipe of Al sputtering (Figure 6b). It is worth underline that both cross-sections 
were depicted with the same scale. Moreover, the order of fabricated materials is different to 
emphasize the influence of the inhomogeneity of the Al film thickness onto the dielectric material 
that is characterized by a very smooth surface. As can be seen, although the total thickness of 
fabricated stacks could be estimated around 50 nm, the thickness of the structure formed with ‘non-
optimal’ and ‘optimal’ recipe is approximated at ~75 nm, and ~55 nm, respectively. This is due to the 
much larger roughness level of Al film deposited by the ‘non-optimal’ recipe. It can be also clearly 
noticed that due to the improvement of homogeneity of Al film, around 30% of the reduction of a 
total thickness of fabricated stack was demonstrated. 

In the last part of this study, the technology of Al/HfOx stack with the titanium nitride (TiN) 
contacts was developed. The structures were fabricated according to the scheme presented in Figure 
7a. Investigated structures were fabricated purposely on both silicon and quartz substrates, to 
perform comprehensive optical characterization and comparison of obtained results. Titanium 
nitride electrodes were formed using the pure titanium target (i.e., 99.999% of purity level) in reactive 
mode with argon, and nitrogen-based plasma. The thickness of TiN films was adjusted to maintain a 
low resistivity level of the conductive film. After the formation of the multilayer stack, the annealing 
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process was performed at 200°C in a vacuum atmosphere, in order to improve the insulating 
properties of the HfOx layer according to our previous studies [38]. Simultaneously, the selected value 
of the temperature does not affect the stability and the chemical composition of the investigated 
multilayer stack. 

 
(a) 

 
(b) 

  
Figure 7. (a) Schematic cross-section of structure based on alternative (5x) Al and HfOx layers 
investigated in this study, and (b) change of effective reflectance of examined stacks due to the 
external electrical polarization; the thickness of Al, HfOx, and TiN films was set at ~5 nm, ~5 nm, and 
50 nm, respectively. 

The fabricated structures were characterized optically in the range of 250 nm to 830 nm 
employing ‘effective’ (i.e., the whole stack based on TiN/ Al/HfOx (5x) /TiN stack) reflectance 
measurements using spectroscopic ellipsometer set to reflectance measurement mode. The especially 
developed adapter was used for the characterization of structures with external electrical (DC range) 
polarization in situ. During the measurements, the bottom TiN electrode was grounded, while the 
top electrode was polarized by a specific voltage value. The resulting changes of reflectance of 
investigated devices due to the electrical polarization are depicted in Figure 7b. The typical reference 
characteristics, i.e., without any external electrical polarization, of structures fabricated on both types 
of substrate, show almost similar character with the lowest reflectivity value ~27% at 320 nm. Then, 
the reflectance is increased up to ~38% at 830 nm. The application of electrical polarization results in 
a visible decrease of reflectance level and it is dependent on voltage value applied to the top TiN 
electrode. The higher the voltage value the lower the effective reflectance of the investigated stack. 
For the highest voltage value (i.e., 5 V) in the case of a structure fabricated on a quartz substrate, the 
decrease of reflectance of the order of 15% and 21%, at 320 nm and 830 nm, respectively, were 
observed. In the case of a silicon substrate, the corresponding decrease of the order of 14% and 18%, 
respectively, were noticed. Unfortunately, due to the high absorbance of TiN films, i.e., the effective 
transmittance level of the investigated stacks was of the order of 5% and it was not possible to 
investigate the changes of this optical parameter as the effect of electrical polarization. The presented 
results of the optical response of fabricated test structures due to the electrical polarization are 
preliminary ones. Further examinations of optical properties of fabricated structures need to be 
performed, especially at a larger spectral range. However, the findings presented in this work are 
very promising for applications of multilayer structures in novel photonic devices based on 
hyperbolic metamaterials in the future. 

4. Conclusions 

This work was aimed at the development of the technology of ultra-thin aluminum layers with 
improved thickness homogeneity and reduced roughness level. The optimization procedure was 
performed using the Taguchi orthogonal tables approach. The Al films were fabricated employing a 
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pulsed-DC magnetron sputtering process. The presented findings allowed for the deposition of 
conductive films with a smaller dimension of Al domains and lower roughness level as compared to 
the non-optimized fabrication procedure. Then, the selected set of process parameters was used in 
the fabrication of stacks based on alternative ultra-thin aluminum and hafnium oxide layers 
(Al/HfOx). Performed optical characterization in the range of 250 nm to 830 nm demonstrated the 
possibility to tune the ‘effective’ reflectivity of investigated multilayer stacks due to the external 
electrical polarization in situ. The increase of the polarization voltage value allowed for a controlled 
decrease of the reflectance in the range of ~14% and ~20%, at 1V and 5V, respectively. The presented 
results are promising for the application of multilayer structures in novel photonic devices based on 
hyperbolic metamaterials; however, further optical investigations at larger spectral ranges are 
needed. 
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